The global ¢-de Rham complex

Ferdinand Wagner
July 12, 2024

Let p be a prime. In [BS19, §16], Bhatt and Scholze construct a functorial (p,g—1)-complete
g-de Rham complex relative to any ¢-PD pair (D, I). This verifies Scholze’s conjecture [Schl17,
Conjecture 3.1] after p-completion, but leaves open the global case. There are (at least) two
strategies to tackle the global case:

(a) One can glue the global ¢g-de Rham complex from its p-completions and its rationalisation
using an arithmetic fracture square.

(b) Following Kedlaya [Ked21, §29], one can construct the global ¢g-de Rham complex as the
cohomology of a global g-crystalline site.

Strategy (a) is what Bhatt and Scholze originally had in mind, but they never published
the argument. The argument is essentially straightforward, but not entirely trivial, and it
may be useful for other constructions with g-de Rham cohomology for which a site-theoretic
interpretation as in strategy (b) is not (yet) available. So we’ll use this short note to provide
the missing details. The goal is to prove the following theorem.

0.1. Theorem. — For a Z-torsion free A-ring A there exists a functor
4-0_ 4 Smy — CAlg(D(y 1) (Alg - 1]) )

from the category of smooth A-algebras into the oco-category of (¢ — 1)-complete Ex-algebras
over Alq — 1], such that q-2_)a ®Ii[[q71]]Z ~ )_/4 agrees with the de Rham complex functor
and for every framed smooth Z-algebra (R,), the underlying object of q-S2p/4 in the derived
oo-category of Alq — 1] can be represented as

a-Qp/a =~ - Ug/aos

where the coordinate-dependent q-de Rham complex q‘QE/A,D is constructed as in [Sch17, §3].

1. Rationalised ¢-crystalline cohomology

Fix a prime p. Then (;{p[[q —1],(¢ — 1)) is a ¢-PD pair as in [BS19, Definition 16.1]. We’ll
show that, after rationalisation, g-crystalline cohomology becomes a base change of crystalline
cohomology.

1.1. Lemma. — For all p-completely smooth Ap—algebms R, there is a functorial equivalence

of Em—(ﬁp ®z, Qp)lq — 1]-algebras
(qufcrys (R/gp lq - 1ﬂ) ®%p Qp)

A

(a-1)

(RTarys(R/A,) ®%, @, )[a — 1].
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1. RATIONALISED ¢-CRYSTALLINE COHOMOLOGY

Proof. Let P — R be a surjection from a p-completely ind-smooth 5—Ep-algebra. Extend the §-
structure on P to Pg— 1] via (q) := 0. Let J be the kernel of P — R and let D := Dp(J);, be
its p-completed PD-envelope. Finally, let ¢-D denote the g-PD-envelope of J[¢— 1] C P[q— 1]
as defined in [BS19, Lemma 16.10].

To construct the desired identification between g-crystalline and crystalline cohomology
after rationalisation, it will be enough to construct a functorial equivalence

(a-D ®z, Q) (1, =~ (D ®z, Qp)la—1].

If D°:= Dp(J) denotes the uncompleted PD-envelope, then P — ¢-D — (¢-D ®z, Qp)(Aq_l)
uniquely factors through D° — (¢-D ®z, Qp)@]il). The tricky part is to show that this
map extends over the p-completion. Since D° is p-torsion free, its p-completion agrees with
D°[t]/(t —p). By Lemma 1.3 below, for every fixed n > 0, every p-power series in D° converges
in the natural topology on (¢-D ®z, Q,)/(q — 1)", so we get indeed our desired extension
D — (¢-D®z,Qp)(,_1)- Extending further, we get a map (D®z, Qp)[a—1] — (¢-D®z, Qp)(;,_1)
of the desired form. Whether this is an equivalence can be checked modulo (¢ — 1) by the
derived Nakayama lemma. Then the base change property from [BS19, Lemma 16.10(3)]
finishes the proof, up to verifying convergence for p-power series in D°. O

To complete the proof of Lemma 1.1, we need to prove two technical lemmas about (¢-)di-
vided powers. Let’s fix the following notation: According to [BS19, Lemmas 2.15 and 2.17], we
may uniquely extend the d-structure from ¢-D to (¢-D ®z, Qp)é\_l. We still let ¢ and § denote
the extended Frobenius and d-map. Furthermore, we denote by

@ 6
Ay =" and () = £

the maps defining a PD-structure and a ¢-PD structure, respectively. Note that v(z) and v,(x)
make sense for all z € (¢-D ®z, Qp),_1 since p and ®,(g) are invertible.

— ()

1.2. Lemma. — With notation as above, the following is true for the self-maps 0 and v, of

(q_D ®Zp Qp)é\q_l g

(a) Foralln>1 and all « > 1, the map § sends (q — 1)"q-D into itself, and p~*(q — 1)"q-D
into p (po‘+1)(q — 1)"¢-D.

(b) Foralln > 1 and all o > 1, the map v, sends (¢ — 1)"q-D into (¢ — 1)"*1¢-D, and
p~*(q — 1)"g-D into p~#F1) (g — 1)"T1g-D.

Proof. Let’s prove (a) first. Let x = p~®(¢ — 1)"y for some y € ¢-D. Since ¢-D is flat over
Zpllg — 1] and thus p-torsion free, we can compute

¢(x) —a? (" —1)"P(y) (¢ —1)"y”
D - patl protl

o(x) =
As ¢P — 1 is divisible by ¢ — 1, the right-hand side lies in p~®**+1 (g — 1)"¢-D. If a = 0, then

the right-hand side must also be contained in ¢-D. But ¢-DNp~!(q¢ — 1)"¢-D = (¢ — 1)"¢-D
by flatness again. This proves both parts of (a). Now for (b), we first compute

Yolg—1) = ((I)(_)l) S(g—1)=—(g—1) z_: ()ql
2
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1. RATIONALISED ¢-CRYSTALLINE COHOMOLOGY

Hence 7,(q — 1) is divisible by (¢ — 1)2. In the following, we'll repeatedly use the relation
Yq(zy) = ¢(y)yq(z) — 2Pd(y) from [BS19, Remark 16.6] repeatedly. First off, it shows that

Ye((g—=1)"z) = ¢((q— D" '2)yg(q — 1) — (¢ — DP5((q¢ — 1)" ')

It follows from (a) that §((¢ — 1)"'2) and ¢((q — 1) '2) are divisible by (¢ — 1)"~!. Hence
74((g — 1)"z) is indeed divisible by (¢ — 1)""!. Moreover, we obtain

(P~ (g —1)"z) = ¢(p~ )7 ((g — 1)"z) — (¢ — 1)"PaPé(p™®).

Now ¢(p~®) = p~® and §(p~?®) is contained in p~ P>tV g-D, hence Yq(p~*(¢—1)"z) is contained
in p~(Pe+1) (g — 1)"¢-D. This finishes the proof of (b). O

1.3. Lemma. — Let x € J. For every n > 1, there are elements yg,...,yn € g-D such that
Yo admits q-divided powers in g-D and

"(z) = yo + prQ(pi_l+"-+P+l)(q _ 1)(p72)+iyi

holds in q-D ®z, Qp, where 4" =y o--- o+ denotes the n-fold iteration of ~y.

Proof. We use induction on n. For n = 1, we compute

il @ =P (0 1 6(a))

Note that 2 admits g-divided powers in ¢-D since we assume = € J. Then ~,(x) admits ¢g-divided
powers again by [BS19, Lemma 16.7]. Moreover, writing ®,(q) = p(1 + (¢ — 1)u) + (¢ — 1)P7},
we find that (®,(q) — p)/p = (¢ — V)u+p (g — 1)P7L. Then (¢ — 1)u(y,(x) + (z)) admits
g-divided powers since it is a multiple of (¢ — 1). This settles the case n = 1. We also remark
that the above equation for v(z) remains true without the assumption x € J as long as the
expression 7y4(z) makes sense.

Now assume 4" can be written as above. We put z; = p= 20" 41 (g — 1)@=2)+iy, for
short, so that v""(z) = yo + 21 + - - - + 2. Recall the relations

Yqla +b) = vg(a) + v4(b +Z <> Wi, §(a+b) =d(a i() L=

The first relation implies that v4(yo + 21+ - - + 25 is equal to v4(y0) +v4(21) + - - - +74(2n) plus
a linear combination of terms of the form yOO z{teezir with O < vy <pandvg+ -+ +v, =p

Now 74(yo) admits ¢g-divided powers again. Moreover, Lemma 1.2(b) makes sure that each
v4(2i) is contained in p~2®*+ P (¢ — 1)P=2)++1g D Tt remains to consider monomials
yolzyt - zir. Put m = max{i | v; # 0}. If vg = p — 1, then all other v; must vanish except
Um = 1. In this case, the monomial is contained in p=2(F" '+ +p+) (g — 1)p=2tmge_p It
vo < p — 1, then we get at least one more factor (¢ — 1) and the monomial y;°zy" --- 24 is
contained in p~2@" P (¢ — 1)P=2)+mAl

A similar analysis, using the second of the above relations as well as Lemma 1.2(a), shows
that (¢ — 1)ud(yo+21+ -+ 2,) and p~1(g—1)P"16(yo + 21 + - - - + 2,) can be decomposed into
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1. RATIONALISED ¢-CRYSTALLINE COHOMOLOGY

a bunch of terms, each of which is either a multiple of (¢ —1) in ¢-D, so that it admits g-divided
powers, or contained in p~ 2" TP+ (¢ — 1) *1g-D for some 1 < i < n+ 1. We conclude that

n n P Q) —-Pp n n
@) = 20" @) + DL (5, (07() + 60" 0)
can be written in the desired form. ]
1.4. The equivalence on ¢-de Rham complexes. — Suppoie the p-completely smooth

/Alp—algebra R is equipped with a p-completely étale framing O0: A,(T},...,Ty) — R. In this
case, the g-crystalline cohomology can be computed as a ¢-de Rham complex

RTg crys (R/Ap[[q - 1]]) >~ CI‘QE/ZP,D
by [BS19, Theorem 16.22]. Similarly, it’s well-known that the crystalline cohomology is given

by the ordinary de Rham complex Q7 /A, (here and throughout the rest of §1, all (¢-)de Rham
complexes are implicitly p-completed). In this case, an explicit isomorphism of complexes

<Q—Q}§/gpﬂ ®Zp@p) Z\q—l) = (QE/XP ®z, Qp) lq —1]

can be constructed as explained in [Sch17, Lemma 4.1]: One first observes that, after rationali-
sation, the partial g-derivatives ¢-0; can be computed in terms of the usual partial derivative

0; via the formula
- [ log(q) log(9)" o \(n=1) | ..
q-0; = q— + E )(asz) 0;

see [BMS18, Lemma 12.4]. Here log(q) refers to the usual Taylor series for the logarithm around
q = 1. Noticing that the first factor is an invertible automorphism, one can then appeal to the gen-
eral fact that for any abelian group M together with commuting endomorphisms g1, ..., gq and
commuting automorphisms h1, ..., hg such that h; commutes with g; for ¢ # j one always has a
canonical isomorphism of Koszul complexes Kos*(M, (g1, ..., 9q4)) = Kos* (M, (h1g1, - -, hagd))-
Observe that we don’t require h; to commute with g; (and it’s not true in the case at hand).
We would like to show that this explicit isomorphism is compatible with the one constructed
in Lemma 1.1. To this end, let’s put ourselves in a slightly more general situation: Instead of a
p-completely étale framing [J as above, let’s assume we’re given a surjection P — R from a
p-completely ind-smooth Ap—algebra P, which is in turn equipped with a p-completely ind-étale
framing [J: ﬁp<{Ts}s€5> — P for some (possible infinite) set S. Then EM{TZ-}Z@[) carries a
5—ﬁp—algebra structure characterised by §(7;) = 0 for all i € I. By [BS19, Lemma 2.18], this
extends uniquely to a 6—Ap—algebra structure on P. If J denotes the kernel of P - R, we can
form the usual PD-envelope D := Dp(J )2/7\ and the ¢g-PD-envelope ¢g-D as before. Furthermore,

we let QE /A, and q—Q;“_ D/A,0 denote the usual PD-de Rham complex and the ¢-PD-de Rham
complex from [BS19, Construction 16.20], respectively (both are implicitly p-completed).

1.5. Lemma. — With notation as above, there is again an explicit isomorphism of complezes

(492 3,092, @) (Aq = (4408 p/ 3,02, Q) la — 1.

-1)
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2. CONSTRUCTION OF THE GLOBAL q-DE RHAM COMPLEX

Proof. This follows from the same recipe as in 1.4, provided we can show that the formula for
q-0; in terms of J; remains true under the identification (¢-D ®z, Qp)f\q_l) = (D®z, Qp)lg—1]
from the proof of Lemma 1.1. But for every fixed n, the images of

(P ®z, Qp)lg—1]

— T

(¢-D®z, Q) /(g —1)" = (D®z, Q)lg—1]/(g—1)"

are dense for the p-adic topology and for elements of (P ®z, Qp)[q — 1] the formula is clear. [

1.6. Lemma. — With notation as above, the following diagram commutes:

(RT erys (R/Ayg —11) ®2, Q) (Rl (R/4y) @2, @, ) g — 1]

_—
(g—1) Lemma 1.1

<q—Q;_D/Zp,D ®z, Qp>/\ — (QE/XP,D ®z, Qp) [q —1]

(q—1) Lemma 1.5

Here the left vertical arrow is the quasi-isomorphism from [BS19, Theorem 16.22] and the right
vertical arrow is the usual quasi-isomorphism between crystalline cohomology and PD-de Rham
complezes.

Proof. Let P* be the degree-wise p-completed Cech nerve of Ap — P and let J* C P*® be the
kernel of the augmentation P®* — R. Let D® := Dp-(J'):f)\ be the PD-envelope and let ¢g-D*® be
the corresponding ¢g-PD-envelope. Finally, form the cosimplicial complexes

M** = Qpe 5 and  ¢-M** = q-Q} pa/3 5.

In the proof of [BS19, Theorem 16.22] it’s shown that the totalisation Tot(¢g-M**) of ¢-M**
is quasi-isomorphic to the 0" column ¢-M%* = q—Q;“_ DA, but also to the totalisation of the

0t row Tot(qg-M*0) = Tot(¢-D*). This provides the desired quasi-isomorphism

q—(vZ:;,D/XpD ~ Tot(qg-M**) ~ Tot(q-D°*) ~ Ry crys (R/le\[[q — 1]]) .

In the exact same way, the quasi-isomorphism Q DA, = ~ Rl rys(R/ A p) is constructed using the
cosimplicial complex M** in [Stacks, Tag 07LG]. Applylng Lemma 1.5 column-wise gives an
isomorphism of cosimplicial complexes (¢-M** ®z, @p)(Aq,l) = (M** ®z, Qp)[g —1]. On oth

columns, this is the isomorphism from Lemma 1.5, whereas on 0! rows it is the isomorphism

from Lemma 1.1. This proves commutativity of the diagram. O
2. Construction of the global ¢-de Rham complex

From now on, we no longer work in a p-complete setting.

2.1. Doing §1 for all primes at once. — Fix n and put Ny, := []c, (2 D) where
the product is taken over all primes ¢ < n. Now fix an arbitrary prime p. Lemma 1.3 shows
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(with notation as in §1) that the map P — ¢-D — ¢-D/(q — 1)"™ can be extended to a map
D — N, 1¢-D/(qg — 1)", no matter how our implicit prime p is chosen. This observation allows
us to do all constructions from §1 “for all primes at once”. For example, if R is a smooth
A-algebra, then this observation allows us to construct a map

A

(l} Ry crys (Rp/Aplg — 1]) ®z Q) | = (1;[ Rl erys (Rp/Ay) @z Q) la—1].

(g—1

compatible with the one from Lemma 1.1, which was constructed for each prime individually.
This map is an equivalence as indicated, as one immediately checks modulo ¢ — 1.

2.2. Construction. — For all smooth A-algebras R, we construct the g-de Rham complex
of R over A as the pullback

H RTg-crys (Rp/jp [q - 1]])

- |

(QR/A ®z Q) E\‘I*l) — <H chrys (Ep/fzip) ®z Q) [[q - 1]]
p

q-S2p/a

Here the bottom horizontal map comes from the comparison of de Rham and crystalline
cohomology and the right vertical map comes from 2.1 above.

Proof of Theorem 0.1. We’ve constructed ¢-{2g/4 in Construction 2.2. Functoriality is clear
since all constituents of the pullback are functorial and so are the arrows between them.
Modulo g — 1, the pullback reduces to the usual arithmetic fracture square for Qg /4, proving
q_Qf/A @Ii[[q_lﬂZ ~ Q—/A-

Finally, suppose R is equipped with an étale framing O: A[T},...,Ty] — R. The same
argument as in 1.4 provides an isomorphism (¢-Q7p /4 o ®ZQ)f\q_1) = (Q%/4 ®2 Q)q — 1]. The
compatibility check from Lemma 1.6 now allows us to identify the pullback square for ¢-Qp /A
with the usual arithmetic fracture square for the complex ¢g-Q7, A completed at (¢ — 1). This
shows ¢-Qp/y ~ q_QE/A,Dv finishing the proof. O
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