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Abstract. — As a consequence of Efimov’s proof of rigidity of the ∞-category
of localising motives rEfi-Rigs, Efimov and Scholze have constructed refinements of
localising invariants such as THH and TC−. These refinements often contain vastly
more information than the original invariant.

In this article we explain a general recipe how to compute the refinements in
certain situations. We then apply this recipe to compute the homotopy groups of
TC−,ref(ku b Q/ku) and TC−,ref(KU b Q/KU). The result has a rather surprising
geometric description and contains non-trivial information modulo any prime, in
contrast to the unrefined TC−.
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§1. Introduction

§1. Introduction
Topological Hochschild homology (THH) and its variants TC− and TP can be used to construct
powerful cohomology theories for p-adic formal schemes, such as prismatic cohomology rBMS19;
BS19s. However, in the setting of rigid-analytic varieties over Qp, or varieties over Q, they are
less useful: When evaluated on rational inputs, these invariants will be rational themselves,
and so any cohomology theory one might construct from them will never admit interesting
comparisons to, say, étale cohomology with torsion coefficients.

In this article we’ll study a refinement of THH/TC− due to Efimov and Scholze that allows
us to get around this shortcoming, while still being somewhat computable. We hope that this
will give rise to some interesting arithmetic cohomology theories.

§1.1. Refined localising invariants

The construction of refinements of THH and TC− is based on Efimov’s rigidity theorem
(Theorem 1.2 below). The notion of rigidity for symmetric monoidal ∞-categories was introduced
by Gaitsgory and Rozenblyum (see rGR17, Definition I.9.1.2s). We’ll work with the following
variant of their definition, which is equivalent to the original one by rRam24, Corollary 4.57s:

1.1. Definition. — A presentable stable symmetric monoidal ∞-category(1.1) E is rigid if
the following two conditions are satisfied:
(a) The tensor unit 1 ∈ E is compact.
(b) E is generated under colimits by objects of the form X » colim(X1 ! X2 ! · · · ), where

each Xn ! Xn+1 is trace-class, that is, induced by a morphism 1 ! X_
n+1 b Xn (see

Definition 2.3).

Generalising the construction of Motloc by Blumberg–Gepner–Tabuada rBGT16s, Efimov
introduces a presentable stable symmetric monoidal ∞-category MotlocE of localising motives
over E rEfi25, Definition 1.20s and shows the following deep result:

1.2. Theorem (rEfi-Rigs; see rKNP24, Theorem 4.7.1s for the case of Motloc). — If E is a
rigid presentable stable symmetric monoidal ∞-category, then the same is true for MotlocE .

Efimov and Scholze observed that this theorem has the following curious consequence:

1.3. Refined localising invariants (Efimov–Scholze). — Let T be a localising invariant
over E , that is, a colimit-preserving functor

T : MotlocE −! D

into a presentable stable ∞-category D. If T is equipped with a symmetric monoidal structure,
then Theorem 1.2 implies that there’s a unique symmetric monoidal factorisation

MotlocE D

Drig

T

T ref

(1.1)We always assume that the tensor product commutes with colimits in both variables (see 1.15).
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§1.1. Refined localising invariants

This factorisation T ref : MotlocE ! Drig is the refinement of T defined by Efimov–Scholze. Here
Drig denotes the rigidification of D in the sense of rRam24, Construction 4.75s; see also rEfi25,
Proposition 1.23s. We recall from these references that Drig can be described as the full
sub-∞-category of Ind(D)(1.2) generated under colimits by ind-objects of the form “colim”i∈Q xi,
where all transition maps xi ! xj for rational numbers i < j are trace-class. If D is locally
rigid and its tensor unit is ω1-compact, then it suffices to consider Z⩾0-indexed ind-objects
instead of Q-indexed ones. In other words, in this case

Drig »
−! Nuc Ind(D)

is given by the nuclear objects in Ind(C) in the sense of Definition 2.3. See rEfi25, Theorem 4.2s.

1.4. Remark. — The refinement procedure from 1.3 is very sensitive to the choice of E . This
is a feature, not a bug, as it offers a lot of flexibility, even if we stick to the case where T is
topological Hochschild homology. For example, we could consider the p-completed THH functor

THH(−;Zp) : Motloc −!
`

SpBS
1˘^

p

to obtain a refinement THHref(−;Zp). But for a complete non-archimedean algebraically closed
field C, we could also define THHref

/OC
(−;Zp) to be the refinement of the functor

THH(−;Zp) : MotlocOC
−! ModTHH(OC ;Zp)

`

SpBS
1˘^

p
,

where we only accept motives over OC as input.(1.3) These two refinements are completely
different, as the forgetful functor MotlocOC

! Motloc doesn’t preserve trace-class morphisms.

The refinement T ref typically contains vastly more information than T itself, as we’ll discuss
in the case of THHref(Q) below. Our first goal in this article is to give a recipe for computing
T ref in certain cases.

1.5. Theorem (see Theorem 2.21). — Assume we’re in the situation of 1.3, with D locally
rigid. Let E ! X be a strongly continuous symmetric monoidal functor into another rigid
symmetric monoidal presentable stable ∞-category, such that X is smooth and proper as an
E-module. Suppose we’re given the following data:
(V ) A tower of E1-algebras in X of the form V0  V1  V2  · · · , such that each Vr is

dualisable in X and contained in the thick tensor ideal generated by V0. Moreover, for all
r ⩾ 0, the induced map Vr+1 b Vr ! Vr b Vr factors through the multiplication

Vr+1 b Vr
µ
−! Vr

as a map of Vr+1-Vr-bimodules.
Let U ⊆ X be the full sub-∞-category spanned by those U ∈ X for which HomX (V0, U) » 0.
Then there exists a cofibre sequence of the following form in Nuc Ind(D):

“colim”
r⩾0

T
`

RModVr(X )
˘_
−! T (X ) −! T ref(U) .

(1.2)Applying Ind(−) to large ∞-categories causes set-theoretical issues, but Nuc Ind(−) is fine; see Remark 2.5.
(1.3)Historically, THHref

/OC
(−;Zp) is the first refined invariant. Efimov and Scholze have sketched a computation

of THHref
/OC

(C;Zp) rSch24as, by reducing the problem to the known computation of THH(OC/p
α;Zp) for all

α ⩾ 1 (compare Theorem 1.5 below).
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§1. Introduction

With the language developed in §2.2, we could say that U is obtained from X by killing V0 and
T ref(U) is obtained from T (X ) by killing the idempotent pro-algebra “lim”r⩾0 T (RModVr(X )).
1.6. How to apply Theorem 1.5. — Even though Theorem 1.5 looks quite technical, we’ll
verify in §2.5 that it covers many cases of interest. This is due to the following observation
(see Corollary 2.30): Let v : I ! 1X be a morphism from a dualisable object such that the
cofibre 1X /v admits a right-unital multiplication. Then Burklund’s tower of E1-algebras rBur22,
Theorem 1.5s

1X /v
2  − 1X /v

3  − 1X /v
4  − · · ·

satisfies the conditions from Theorem 1.5(V ). Thus, to compute, for example, THHref(Sr1/ps)
for a prime p, one can choose a Burklund-style tower of E1-structures on S/pα for sufficiently
large α to obtain a cofibre sequence

“colim”
α

THH(S/pα)_ −! THH(S) −! THHref
`

S
“

1
p

‰˘

.

In a similar way, we’ll explain how one could attempt computations such as THHref(Q),
THHref(Srxs), or THHref(LfnS(p))—which brings us to our main question:

§1.2. What’s THHref (Q)?
We’ll explain in §1.3 why the answer to this question should be interesting, but let us already
remark that it has to be non-trivial: As we’ll see below, THHref(Q)^p ̸» 0 for all primes p. So
in contrast to THH(Q) » Q, the refined version THHref(Q) contains non-trivial p-complete
information for any prime p.

However, computing THHref(Q), or just its p-completions, is a highly non-trivial task: As
we’ve seen above, this would involve computing THH(S/pα), or at least a pro-system of the
form “lim”αTHH(S/pα), which seems currently out of reach.

Scholze and Efimov have suggested that a more approachable goal would be to compute
THHref((MUbQ)/MU) and then to attack the original question—to the extent in which that’s
possible—via Adams–Novikov descent. Here we let THHref(−/k) denote the refinement of

THH(−/k) : Motlock ! Modk(Sp)
BS1

for any E∞-ring spectrum k.
While we still don’t know what happens for k = MU, the purpose of this article is to give

an answer for k = ku and k = KU. To this end, we’ll introduce the following variant of THHref ,
which will make it easier to formulate the result in geometric terms.
1.7. Refined TC−. — If k is complex orientable and t ∈ π−2(k

hS1
) is a chosen complex

orientation, then taking S1-fixed points induces a symmetric monoidal equivalence

(−)hS
1
: Modk(Sp)

BS1 »
−! Mod

khS1 (Sp)^t

between k-modules with S1-action and t-complete khS1-modules (see Lemma 3.2). In particular,
we can view TC−(−/k) as a symmetric monoidal functor Motlock ! Mod

khS1 (Sp)^t , which
contains the same information as THH(−/k). Applying refinement, we obtain the functor

TC−,ref(−/k) : Motlock −! Nuc(khS
1
)

of by Efimov and Scholze. Here Nuc(khS
1
) := Nuc Ind(Mod

khS
1 (Sp)^t ) denotes Efimov’s ∞-

category of nuclear khS1-modules.
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§1.2. What’s THHref(Q)?

So it will be enough to compute TC−,ref(ku b Q/ku) and TC−,ref(KU b Q/KU).

1.8. q-Hodge filtrations and q-Hodge complexes. — Suppose we’ve chosen an E1-
structure on S/m for some integer m. Then rWag25a, Theorems 4.27 and 5.63s show that

π2˚ TC
−`

(ku b S/m)/ku
˘

„= fil⋆q9Hdg q9dR(Z/m)/Z ,

π2˚ TC
−`

(KU b S/m)/KU
˘

„= q9Hdg(Z/m)/Zrβ±1s ,

where q9dR−/Z denotes the derived q-de Rham complex, fil⋆q9Hdg is a q-Hodge filtration in the
sense of rWag25b, Definition 3.2s (which in the case of Z/m just amounts to a q-deformation
of the Hodge filtration, as the additional compatibilities are trivial), and q9Hdg(Z/m)/Z is the
associated q-Hodge complex

q9Hdg(Z/m)/Z := colim
´

fil0q9Hdg q9dR(Z/m)/Z
(q−1)
−−−! fil1q9Hdg q9dR(Z/m)/Z

(q−1)
−−−! · · ·

¯^

(q−1)
.

Thanks to Burklund’s result rBur22, Theorem 1.5s, we can choose a coinitial sub-poset N ⊆ N
of positive integers, partially ordered by divisibility, together with compatible E1-structures on
S/m for m ∈ N . This leads to the following result:

1.9. Theorem (see Theorem 3.14). — TC−,ref((ku b Q)/ku) and TC−,ref((KU b Q)/KU)
are concentrated in even degrees, and their even homotopy groups are described as follows:
(a) π2˚ TC

−,ref((ku b Q)/ku) „= A˚
ku, where A˚

ku is the idempotent nuclear graded ZrβsJtK-
algebra obtained by killing the pro-idempotent “lim”

m∈N Fil
˚
q9Hdg q9d̂R(Z/m)/Z.

(b) π2˚ TC
−,ref((KU b Q)/KU) „= AKUrβ±1s, where AKU is the idempotent nuclear ZJq − 1K-

algebra obtained by killing the pro-idempotent “lim”
m∈N q9Hdg(Z/m)/Z.

Theorem 1.9 provides a description of the desired homotopy rings in terms of the q-Hodge
filtrations on q9dR(Z/m)/Z. In §3.2, we’ll describe fil⋆q9Hdg q9dR(Z/m)/Z in terms of explicit
generators. This leads to a much more explicit description of A˚

ku and AKU in terms of
rings of overconvergent functions on certain adic spaces. For simplicity, we’ll work with
TC−,ref((ku^

p b Q)/ku^
p ) and TC−,ref((KU^

p b Q)/KU^
p ) instead. Let us first formulate the

result for KU^
p , as it is easier to state. We put

AKU,p := π0TC
−,ref`(KU^

p b Q)/KU^
p

˘

,

so π2˚ TC
−,ref((KU^

p b Q)/KU^
p )

„= AKU,prβ
±1s. Let also X := SpaZpJq − 1K ∖ tp = 0, q = 1u

be the “analytic locus” where p or q− 1 is invertible. Then AKU,p has the following description,
confirming a conjecture of Scholze and Efimov.

1.10. Theorem. — Let Z ⊆ X denote the union of the closed subsets Spa(Fp((q−1)),FpJq−1K)
and Spa(Qp(ζpn),Zprζpns) for all n ⩾ 0. Let Z† denote the overconvergent neighbourhood of Z
in X and O(Z†) the nuclear ZpJq − 1K-algebra of overconvergent functions on Z. Then

AKU,p
„= O(Z†) .

In Fig. 1 we show a picture of Z†. It should be reminiscent of Scholze’s famous prismatic pic-
ture (a nice depiction of which can be found in rHN20, p. 4s), but the rays are “overconvergently
blurred” and the “origin” tp = 0, q = 1u has been removed.
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p = 0

q
=

1

q
=
ζ p

q
=
ζ p

2

q =
ζ p3

Figure 1: The analytic spectrum of AKU,p
„= O(Z†).

Since Z† visibly contains the entire infinitesimal neighbourhood of tp = 0u except for
the “origin”, we see that TC−,ref((KU^

p b Q)/KU^
p )

^
p ̸= 0. In particular, it follows that

THHref(Q)^p ̸» 0, as we’ve claimed above.
To formulate a similar geometric result for ku^

p , consider the ungraded ring Zrβ, ts^(p,t) with
its (p, t)-adic topology. We wish to encode the graded (p, t)-complete ring ZprβsJtK in terms
of an action of Gm on SpaZrβ, ts^(p,t), as usual—but we have to be careful: Since we wish
that t is a topologically nilpotent elements in non-zero graded degree, we can only act by
units u “of norm |u| = 1”. More precisely, we have to replace Gm by the “adic unit circle”
U(1)■ := Spa(Zru±1s,Zru±1s).

With this modification, everything works (as we’ll elaborate in §4.2): Declaring β and t to
have degree 2 and −2, respectively, determines an action of U(1)■ on SpaZrβ, ts^(p,t), and we can
identify ZprβsJtK with the structure sheaf on (SpaZrβ, ts^(p,t))/U(1)■, where the quotient is always
taken in the derived (or “stacky”) sense. We also let X˚ := SpaZrβ, ts^(p,t) ∖ tp = 0, βt = 0u.
Since p and βt are homogeneous, X˚ inherits an action of U(1)■. Putting

A˚
ku,p := π2˚ TC

−,ref`(ku^
p b Q)/ku^

p

˘

,

we see that A˚
ku,p is a graded ZprβsJtK-module, hence we can regard it as a quasi-coherent sheaf

on (SpaZrβ, ts^(p,t))/U(1)■. As we’ll see, it is already the pushforward of a sheaf on the open
substack X˚/U(1)■. This sheaf, which we’ll also denote A˚

ku,p, can be described as follows:

1.11. Theorem. — Let Z˚ ⊆ X˚ be union of the U(1)■-equivariant closed subsets tp = 0u

and trpnsku(t) = 0u for all n ⩾ 0, where rpnsku(t) := ((1 + βt)p
n − 1)/β denotes the pn-series

of the formal group law of ku. Let Z˚,† denote the overconvergent neighbourhood of Z˚. Then
Z˚,† inherits a U(1)■-action and

A˚
ku,p

„= OZ˚,†/U(1)■ .
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§1.3. New cohomology theories for Q-varieties

§1.3. New cohomology theories for Q-varieties
Let us end with a bit of speculation. It should be possible to adapt the formalism of even
filtrations from rHRW22s to TC−,ref(−/ku) and TC−,ref(−/KU). For a smooth variety X over
Q, this would allow us to construct cohomology theories RΓku(X) and RΓKU(X); the former
comes naturally equipped with a filtration:

fil⋆RΓku(X) := gr˚
ev,hS1 TC

−,ref`(ku bX)/ku
˘

,

RΓKU(X) := gr0ev,hS1 TC
−,ref`(KU bX)/KU

˘

.

This article can be viewed as a computation of the coefficients of fil˚ RΓku(−) and RΓKU(−).

1.12. Relation to q-de Rham/q-Hodge cohomology. — Morally, fil˚ RΓku(X) should
be the “q-Hodge-filtered q-de Rham cohomology of X” and RΓKU(X) should be the “q-Hodge
cohomology of X”.

We remark that there’s a naive definition of q-de Rham cohomology of Q-varieties (obtained,
for example, by applying rWag25b, Theorem A.1s for A = Q), but it would just be a (q − 1)-
completed base change of ordinary de Rham cohomology. By contrast, RΓku(X) and RΓKU(X)
will be non-trivial modulo any prime p, and so they ought to be much more interesting. In
particular, we hope to find not only comparison isomorphisms with de Rham cohomology, but
also with étale cohomology of XQ with torsion coefficients.

1.13. Relation to Habiro cohomology. — We expect that RΓKU(−) naturally descends
from ZJq − 1K to the Habiro ring H := limm∈N Zrqs

^

(qm−1). In particular, its ring of coefficients
AKU should admit a Habiro descent AKU satisfying AKU

„= AKU b■
H ZJq − 1K.

This descent should arise as follows: We explain in rWag25a, §5s how descent to the Habiro
ring corresponds to making the S1-action on THH(−/ku) genuine with respect to all finite
subgroups Cm ⊆ S1; or more precisely, it corresponds to turning THH(−/ku) into a cyclonic
spectrum. One could then apply the refinement procedure to the functor

THH(−/KU): MotlocKU −! CycnSp

valued in cyclonic spectra. Via an appropriate cyclonic even filtration, it should then be possible
to to construct the desired Habiro descent RΓH(X) of RΓKU(X). Moreover, we hope that
RΓH(X) admits a stacky approach, given by an appropriate cyclonic version of the even stack
of rDHRYs, and we expect that the resulting Habiro stack XH is closely related to Scholze’s
construction rSch25s.

1.14. Higher chromatic bases. — We would be very interested in the calculation for MU
or any higher chromatic base like BP⟨n⟩ or En, and we’re curious to see whether the deformed
de Rham complexes from rDM23s make an appearance. The final goal should be to work
directly with the refinement of

THH(−) : Motloc −! CyctSp ,

valued in cyclotomic spectra, and to describe the cyclotomic even stack of THHref(X) when X
is a Q-variety. The result might be close to the finest possible information that one can squeeze
out of THH(−).

Here we should point out that THHref(Q) is an E∞-algebra over the K-theory spectrum
K(Q), which vanishes upon K(n)-localisation for n ⩾ 2. Due to the delicate nature of the
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§1. Introduction

refinement, this doesn’t mean that the answer over a higher chromatic base would be trivial,
and TC−,ref(−/MU) should still contain strictly more information than TC−,ref(−/ku), but
that information will necessarily be rather subtle.(1.4)

§1.4. Overview of this article

In §2, we study refined localising invariants in general. After a few generalities in §§2.1–2.3,
we’ll explain a method to compute refinements in §2.4. We’ll then show in §2.5 that Burklund’s
E1-structures satisfy the necessary assumptions for the method to be applicable.

In §3, we’ll then apply the method to compute the homotopy groups of TC−,ref((kubQ)/ku)
and TC−,ref((KU b Q)/KU). We’ll first derive a preliminary description in terms of certain
q-Hodge filtrations fil⋆q9Hdg q9dR(Z/m)/Z in §3.1. Afterwards, we’ll construct explicit generators
of these filtrations in §3.2. This will finally allow us to prove the explicit descriptions of
Theorems 1.10 and 1.11 in §4.

1.15. Notation and conventions. — Throughout the article, we freely use the language of
∞-categories and we’ll adopt the following conventions:
(a) Stable ∞-categories. We let Sp denote the ∞-category of spectra. For an ordinary

ring R, we let D(R) denote the derived ∞-category of R. We often implicitly regard
objects of D(R) as spectra via the Eilenberg–MacLane functor H, but we’ll always suppress
this functor in our notation. For a stable ∞-category C, we let HomC(−,−) denote the
mapping spectra in C. The shift functor and its inverse will always be denoted by Σ and
Σ−1 (even for D(R)), to avoid confusion with shifts in graded or filtered objects.

(b) Symmetric monoidal ∞-categories. If no confusion can occur, we denote the tensor
unit by 1 and the tensor product by b. If C is symmetric monoidal, we let Alg(C) and
CAlg(C) denote the ∞-categories of E1-algebras and E∞-algebras in C, respectively.

Whenever we consider a symmetric monoidal ∞-category C which is stable or pre-
sentable, we always implicitly assume that the tensor product commutes with finite colimits
or arbitrary colimits, respectively. In the presentable case, we let HomC(−,−) denote the
internal Hom in C and X_ := HomC(X,1) the dual of an object X ∈ C.

(c) Graded and filtered objects. For a stable ∞-category C, we let Gr(C) and Fil(Sp)
denote the ∞-categories of graded and (descendingly) filtered objects in C. The shift in
graded or filtered objects will be denoted (−)(1). An object with a descending filtration is
typically denoted

fil⋆X =
´

· · · filnX  filn+1X  · · ·
¯

and we let gr˚ X denote the associated graded, given by grnX := cofib(filn+1X ! filnX).
We mostly work with filtrations that are constant in degrees ⩽ 0 (such as the Hodge
filtration). In this case we’ll abusingly write fil⋆X = (fil0X  fil1X  · · · ); this should
be interpreted as the constant fil0X-valued filtration in degrees ⩽ 0.

If C is symmetric monoidal and the tensor product − b − commutes with colimits
in both variables, we equip Gr(C) and Fil(C) with their canonical symmetric monoidal
structures given by Day convolution. We’ll use the fact that Fil(C) » Mod1Grrts Gr(C),

(1.4)Here’s one way to think about this: TC−,ref(ku b Q/ku) should see the algebraic locus where “v1 ̸= 0”. In
the world of adic spaces this corresponds to the condition “|v1| ⩾ 1”. We expect that TC−,ref(MU b Q/MU) is
able to see a certain part the locus where “0 < |v1| < 1”.

8



§1.4. Overview of this article

where 1Gr denotes the tensor unit in Gr(C) and t sits in graded degree −1; see e.g. rRak21,
Proposition 3.2.9s. Under this equivalence, passing to the associated graded corresponds
to “modding out t”, i.e. the base change 1Gr b1Grrts −.

Sometimes we also consider ascending filtrations. Ascendingly filtered objects will be
denoted fil⋆X = (· · · ! filnX ! filn+1X ! · · · ) and the associated graded by gr˚ X,
where grnX := cofib(filn−1X ! filnX).

(d) Condensed mathematics. Whenever we use condensed mathematics, we work in the
light condensed setting. We’ll distinguish between the words static (“un-animated”) for
a spectrum concentrated in degree 0, and discrete (“un-condensed”) for a condensed
spectrum with the discrete topology.

(e) Derived quotients. For an E1-ring spectrum R, a homotopy class f ∈ πn(R), and a left-
or right-R-module M , we denote

M/f := cofibpf : ΣnM !Mq .

For several homotopy classes f1, . . . , fr, we let M/(f1, . . . , fr) := (· · · (M/f1)/f2 · · · )/fr.
Similarly, if R˚ is a graded E1-ring spectrum, f ∈ πn(R

i), and M˚ is a left or right-R-
module, we put

M˚/f := cofib
`

f : ΣnM(i)!M
˘

and define M˚/(f1, . . . , fr) analogously. The same notation will also be used in the filtered
setting, by regarding filtered objects as graded 1Grrts-modules, as explained above.

(f) Completions. For an E∞-ring spectrum R, finitely many homogeneous homotopy classes
f1, . . . , fr ∈ π˚(R), and and an R-module spectrum M , we let

M̂(f1,...,fr) := lim
n⩾1

M/(fn1 , . . . , f
n
r )

denote the (f1, . . . , fr)-adic completion of M . Since the completion only depends on the
ideal I = (f1, . . . , fr) ⊆ π˚(R), we often just write M̂I (or (−)^I for longer arguments). If
R is an ordinary ring, this recovers the notion of derived I-completion; in particular, all
completions in this article will be derived. For the p-completions of Z and the sphere
spectrum S we omit the hat and just write Zp and Sp.

We let ModR(Sp)
^

I ⊆ ModR(Sp), or D̂I(R) ⊆ D(R) for ordinary rings R, denote the
full sub-∞-category spanned by the I-complete objects, that is, those M for which M » M̂I .
The following fact will be used countless times: If M is (f1, . . . , fr)-complete, and the
homotopy groups of M/(f1, . . . , fr) vanish in some degree d, then also the homotopy
groups of M must vanish in degree d. Completion can analogously be defined in the
graded or filtered setting, and then an analogue of this fact will still be true.

(g) Derived (q-)de Rham complexes. We let dRR/A and q9dRR/A denote the derived de
Rham complex and the derived q-de Rham complex of R over A, respectively (the latter
is only defined if A is a Λ-ring).

1.16. Acknowledgments. — We are grateful to Peter Scholze and Sasha Efimov for
proposing this question and explaining many technical points of the theory. Moreover, it was
Scholze who pointed out that the filtration on q9dR(Z/pα)/Zp

, that we found in the homotopy
groups of TC−((ku/pα)/ku), should indeed be canonical, despite the second author’s initial
conviction that this couldn’t possibly be true—this observation is what led the second author
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to revisit the theory of q-Hodge filtrations/complexes in rWag25b; Wag25as. Special thanks
are also due to Sanath Devalapurkar and Arpon Raksit for generously sharing and explaining
their (by then) unpublished results on the connection between q-de Rham cohomology and ku.
Furthermore, would like to thank Gabriel Angelini-Knoll, Johannes Anschütz, Ben Antieau, Ko
Aoki, Guido Bosco, Robert Burklund, Jeremy Hahn, Lars Hesselholt, Deven Manam, Florian
Riedel, and Juan Esteban Rodríguez Camargo for helpful discussions.

This work was carried out while F.W. was a Ph.D. student at the University/Max Planck
Institute for Mathematics in Bonn and he would like to thank these institutions for their
hospitality. F.W. was supported by DFG through Peter Scholze’s Leibniz-Preis.
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§2. Refined localising invariants and how to compute them

In this section we’ll present Efimov–Scholze’s construction of refined localising invariants and
we’ll explain a method for computing them in the case of certain “open submotives” of “smooth
and proper” rigid symmetric monoidal ∞-categories over some base (these notions will be made
precise below). As a consequence, we’ll get a recipe for computing THHref(Q), which we’ll
carry out (after base change to ku) in §§3–4, but the method would apply just as well to other
cases like THHref(LfnS(p)/S(p)) or THHref(Srxs).

§2.1. Trace-class morphisms and nuclear objects

In this subsection we briefly review the two notions in the title. These will be used countless
times in the rest of the article. Throughout, we let C be a presentable symmetric monoidal
∞-category; by convention (see 1.15), this includes the assumption that the tensor product
commutes with colimits in both variables.

2.1. Definition. — A morphism φ : X ! Y in C is called trace-class if there exists morphism
η : 1! X_ b Y in C such that φ is the composition

X » X b 1
Xbη
−−−! X bX_ b Y

evX bY
−−−−−! 1 b Y » Y .

We often call η the classifier of φ and say that η witnesses φ being trace-class.

Trace-class morphism have a number of nice properties. We’ll often use the properties from
rCS22, Lemma 8.2s as well as the following lemma.

2.2. Lemma. — Let F : C ! D be a symmetric monoidal functor between presentable
symmetric monoidal ∞-categories. By abuse of notation, we use (−)_ to denote both the predual
in C and in D.
(a) There exists a natural transformation F ((−)_) ⇒ F (−)_.
(b) If X ! Y is trace-class in C, then Y_ ! X_ is trace-class in C and F (X) ! F (Y ) is

trace-class in D.
(c) The commutative square in D formed by the morphisms from (a) and (b)

F (Y_) F (X_)

F (Y )_ F (X)_

admits a canonical diagonal map F (Y )_! F (X_) that makes both triangles commute.

Proof. The natural transformation from (a) is adjoint to F ((−)_) bD F (−) ⇒ 1D, which is in
turn given by applying F to the evaluation (−)_ b (−) ⇒ 1C .

Now let X ! Y be trace-class in C with classifier 1C ! X_ b Y . If we apply F to the
classifier and compose with the morphism F (X_)! F (X)_ from (a), we obtain a morphism
1D ! F (X_) bD F (Y )! F (X)_ bD F (Y ), which witnesses F (X)! F (Y ) being trace-class.
If we compose instead with Y ! Y__, we obtain 1C ! X_bC Y ! X_bC Y

∨∨, which witnesses
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Y_ ! X_ being trace-class. This shows (b). To show (c), we construct the diagonal map
F (Y )_! F (X_) as follows:

F (Y )_ −! F (X_ bC Y ) bD F (Y )_ » F (X_) bD F (Y ) bD F (Y )_ −! F (X_) .

Here we use the classifier 1C ! X_ bC Y and the evaluation map for F (Y ).

2.3. Definition. — In addition to the assumptions above, let us now assume that C is stable,
compactly generated, and the tensor unit 1 is compact.
(a) An object X ∈ C is called nuclear if every morphism P ! X from a compact object P is

trace-class.
(b) We call X basic nuclear if it can be written as X » colim(X0 ! X1 ! · · · ) such that

each transition map Xn ! Xn+1 is trace-class.
We let Nuc(C) ⊆ C denote the full sub-∞-category spanned by the nuclear objects.

2.4. Theorem. — Let C be a presentable stable symmetric monoidal ∞-category such that C
is compactly generated and the tensor unit 1 ∈ C is compact.
(a) Nuc(C) is stable and closed under colimits and tensor products in C.
(b) Nuc(C) is ω1-compactly generated and the ω1-compact objects are precisely the basic

nuclears.
(c) If F : C ! D is a symmetric monoidal colimit-preserving functor into another presentable

symmetric monoidal ∞-category, then F restricts to a functor F : Nuc(C)! Nuc(D).

Proof. Parts (a) and (b) are rCS22, Theorem 8.6s. By Lemma 2.2(b), F preserves trace-class
maps, hence basic nuclear objects and thus all nuclear objects by (b). This proves (c).

2.5. Remark. — If C is a small stable symmetric monoidal ∞-category, then Theorem 2.4
can be applied to Ind(C). Since every trace-class map in Ind(C) factors through a compact
object by rCS22, Lemma 8.4s, we see that the basic nuclear objects in Ind(C) are of the form
“colim”(X1 ! X2 ! · · · ), where each Xn ! Xn+1 is trace-class in C.

If C is a presentable stable symmetric monoidal ∞-category, one can still make sense of
Nuc Ind(C) without running into set-theoretic problems. Indeed, if κ is a sufficiently large
regular cardinal such that C is κ-compactly generated and 1 is κ-compact, then every trace-class
morphism in C factors through a κ-compact object. Thus every basic nuclear ind-object is
equivalent to one in which each Xn is κ-compact and so the basic nuclear objects in form an
essentially small ∞-category. We may then define Nuc Ind(C) as Indω1(−) of the ∞-category
of basic nuclear objects.

§2.2. Killing (pro-)algebra objects
In this subsection we review the general formalism for passing to the “open complement” of
an algebra object. We’ll follow rCS24, Lecture 13s. Throughout, let’s fix a presentable stable
symmetric monoidal ∞-category C.

2.6. Killing algebras. — Let A ∈ C be an object equipped maps µ : AbA! A and 1! A
such that µ is left-unital (or right-unital; this doesn’t matter). We let CA ⊆ C be the full
sub-∞-category spanned by those U ∈ C for which

HomC(A,U) » 0 ,
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where HomC denotes the internal Hom of C (see 1.15), Clearly CA is closed under limits in C. If
κ is a sufficiently large cardinal such that S bA are κ-compact for all S in a set of generators
for C, then CA is also closed under κ-filtered colimits. By the ∞-categorical reflection theorem
rRS22s, it follows that the inclusion CA ! C admits a left adjoint j˚ : C ! CA. Since CA is also
clearly closed under HomC(Y,−) for any Y ∈ C, we see that

j˚(X b Y )
»
−! j˚

`

j˚(X) b Y
˘

is an equivalence for all X,Y ∈ C. By abstract nonsense about symmetric monoidal localisations
(see rL-HA, Proposition 2.2.1.9s), it follows that CA and j˚ : C ! CA can be equipped with
canonical symmetric monoidal structures and the inclusion CA ! C with a lax symmetric
monoidal structure. In particular, j˚(1) is an E∞-algebra in C. We’ll often say that CA is
obtained from C by killing A and j˚(1) is obtained from 1 by killing A.

Our first goal is now to give a formula for j˚ in certain cases.

2.7. Lemma. — Let I := fib(1! A). Then for every X ∈ C the canonical map

ηX : X » HomC(1, X) −! HomC(I, X)

becomes an equivalence upon applying HomC(−, U) for any U ∈ CA.

Proof. It’s enough to show HomC(fib(ηX), U) » 0. Note that the fibre fib(ηX) » HomC(A,X)
is a weak A-module in the sense that there exists a unital multiplication map

Ab HomC(A,X)! HomC(A,X) .

In particular, HomC(A,X) is a retract of A b HomC(A,X) and so it suffices to show that
HomC(−, U) vanishes on the latter. Now HomC(Ab Y,U) » HomC(Y,HomC(A,U)) » 0 holds
for all Y ∈ C, so we conclude.

2.8. Proposition. — With notation as above, suppose that one of the following two conditions
is satisfied:
(a) For all X ∈ C, we recursively put X0 := X and Xn+1 := HomC(I, Xn). Then the diagram

X
ηX−! X1

ηX1−−! X2

ηX2−−! · · ·

stabilises at some finite stage (for example, this is satisfied if A is idempotent—then the
colimit always stabilises after the first step).

(b) The functor HomC(A,−) commutes with sequential colimits (for example, this is satisfied
if A is dualisable in C).

Then j˚(X) is the colimit of the diagram from (a) for all X ∈ C.

Proof. Let us denote the colimit of the diagram from (a) by X∞. Then Lemma 2.7 ensures
that HomC(X∞, U)! HomC(X,U) is an equivalence for all U ∈ CA, so we only need to check
X∞ ∈ CA; that is, HomC(A,X∞) » 0. Equivalently, ηX∞ : X∞ ! HomC(I, X∞) needs to be an
equivalence. But either of the two assumptions above makes sure that HomC(I,−) commutes
with the colimit defining X∞ and so ηX∞ is an equivalence by construction.

We’ll now explain a variant of the construction above in a pro-/ind-setting.
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2.9. Killing pro-algebras — We keep C a presentable symmetric monoidal stable ∞-
category. The tensor product on C extends to symmetric monoidal structures on Pro(C) and
Ind(C).(2.1) Observe that HomC can also be extended to a functor

Pro(C)op b Ind(C) » Ind(Cop) b Ind(C)
Ind(HomC)−−−−−−−! Ind(C) ,

which, by abuse of notation, we still denote HomC . Explicitly,

HomC

´

“lim”
j∈J

Yj , “colim”
k∈K

Zk

¯

» “colim”
(j,k)∈Jop×K

HomC(Yj , Zk) .

Let now A := “lim”i∈I Ai ∈ Pro(C) be a pro-object equipped with maps µ : A b A ! A and
1 ! A such that µ is left-unital. We let Ind(C)A ⊆ Ind(C) denote the full sub-∞-category
spanned by those ind-objects for which

HomC(A,M) » 0 .

Our goal is again to describe a left adjoint j˚ : Ind(C)A ! Ind(C) of the inclusion. To this end,
let I := fib(1! A) and consider the canonical maps ηX : X » HomC(1, X)! HomC(I, X) for
all X ∈ Ind(C), as in Lemma 2.7.

2.10. Lemma. — The inclusion of Ind(C)A admits a left adjoint j˚ : Ind(C) ! Ind(C)A,
which can be explicitly described as follows: For X ∈ C we recursively put X0 := X and
Xn+1 := HomC(I, Xn). Then

j˚(X) » colim
´

X
ηX−! X1

ηX1−−! X2

ηX2−−! · · ·
¯

.

Proof. Since HomC(A,−) : Ind(C)! Ind(C) preserves filtered colimits, we can argue as in the
proof of Proposition 2.8 to see that j˚(X) ∈ Ind(C)A. It remains to show that the canonical
morphism X ! j˚(X) induces equivalences

HomInd(C)
`

j˚(X), U
˘ »
−! HomInd(C)(X,U)

for all U ∈ Ind(C)A. It will be enough to show the same for ηX , or equivalently, that
HomInd(C)(HomC(A,X), U) » 0. To this end, let M ∈ Ind(C) be any object for which the
natural transformation HomC(A,−) ⇒ HomC(1,−) » (−) admits a section.(2.2) Via such a
section M ! HomC(A,M), the identity on HomInd(C)(M,U) factors through

HomInd(C)
`

HomC(A,M),HomC(A,U)
˘

» 0 ,

and so HomInd(C)(M,U) » 0. Since such a section exists for M = HomC(A,X), we conclude.

2.11. Killing idempotent pro-algebras. — Suppose that A is idempotent in Pro(C), that
is, 1! A induces an equivalence

A » 1 bA
»
−! AbA .

(2.1)We’ll ignore the set-theoretic difficulties that arise with applying Pro(−) and Ind(−) to large ∞-categories.
In all cases of interest, we can safely replace C by its κ-compact objects Cκ ⊆ C for some large enough regular
cardinal κ (usually κ = ω1 is enough).

(2.2)Intuitively, the condition should be that M admits a unital multiplication A b M !M , but this doesn’t
make sense in our setting. So we replace this by the condition that HomC(A,M)!M admits a section.
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Let us spell out how j˚(1) looks like in this case: We write A = “lim”Ai and denote by
(−)_ := HomC(−,1) the predual in C. Then Lemma 2.10 implies that there is a cofibre sequence

“colim”
i∈Iop

A_

i −! 1 −! j˚(1) .

For idempotent A, we check in Lemma 2.12 below that j˚ : Ind(C)! Ind(C)A can be equipped
with a symmetric monoidal structure (we don’t know if this works in general—the argument
from 2.6 doesn’t seem to work anymore). As a consequence, j˚(1) will be an E∞-algebra in
Ind(C). We’ll say that j˚(1) is obtained from 1 by killing the idempotent pro-algebra A.

2.12. Lemma. — Suppose that A is an idempotent pro-object. Then for all X,Y ∈ Ind(C),
the canonical morphism

j˚(X b Y )
»
−! j˚

`

j˚(X) b Y
˘

is an equivalence. In particular, there’s a canonical way to equip j˚ : Ind(C)! Ind(C)A with a
symmetric monoidal structure.

Proof. By Lemma 2.10 and idempotence of A, j˚(X) » cofib(HomC(A,X) ! X). Thus, to
show the first assertion, we may equivalently show that the canonical morphism

HomC
`

A,HomC(A,X) b Y
˘ »
−! HomC(A,X) b Y

induced by 1! A is an equivalence. To see this, first observe that this morphism has a left
inverse given by

HomC(A,X) b Y » HomC
`

A,HomC(A,X)
˘

b Y −! HomC
`

A,HomC(A,X) b Y
˘

using idempotence of A and Y » HomC(1, Y ). Now, in general, let M ∈ Ind(C) be an ind-
object for which HomC(A,M)!M has a left inverse. We can then exhibit HomC(A,M)!M
as a retract of HomC(A,HomC(A,M)) ! HomC(A,M). But the latter is an equivalence by
pro-idempotence of A, so already HomC(A,M)!M must be an equivalence.

This finishes the proof that j˚(X b Y ) ! j˚(j˚(X) b Y ) is an equivalence. By abstract
nonsense about symmetric monoidal structures on localisations (see rL-HA, Proposition 2.2.1.9s),
it follows that j˚ can be canonically equipped with a symmetric monoidal structure.

2.13. Remark. — In general, j˚(1) is not an idempotent E∞-algebra in Ind(C); it is
idempotent if and only if A_ := “colim”i∈Iop A

_

i is an ind-idempotent coalgebra in the sense that
A_! 1 induces an equivalence A_ bA_ » A_ in Ind(C).

In the following lemma we’ll study a special situation in which this is the case.

2.14. Lemma. — Let A = “lim”i∈I Ai be an idempotent pro-object whose transition maps
are eventually trace-class in the sense that for all i ∈ I there exists an object j ! i such that
Aj ! Ai is trace-class. Let A_ := “colim”i∈I A

_

i . Then the canonical map

X bA_ »
−! HomC(A,X)

is an equivalence for all X ∈ Ind(C). In particular, this implies:
(a) A_ is an idempotent coalgebra in Ind(C) with eventually trace-class transition maps.
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(b) j˚(1) is an idempotent nuclear E∞-algebra in Ind(C), Ind(C)A ⊆ Ind(C) is precisely the
full sub-∞-category of j˚(1)-modules, and − b j˚(1) » j˚(−).

(c) If F : C ! D is any symmetric monoidal functor of presentable symmetric monoidal
∞-categories, then F (j˚(1)) is obtained by killing the idempotent pro-algebra F (A).

Proof sketch. We can construct an inverse of X b A_ ! HomC(A,X) as follows: Fix some
i ∈ I, choose j ! i such that Aj ! Ai is trace-class and let 1! Ai bA_

j be the corresponding
classifier. Then consider the composition

HomC(Ai, X) −! HomC(Ai, X) bAi bA_

j −! X bA_

j .

In the first map, we tensor HomC(Ai, X) with the classifier above. In the second map we use
the evaluation HomC(Ai, X) bAi ! X. It’s straightforward but a little tedious to check that

X bA_

i −! HomC(Ai, X) −! X bA_

j

HomC(Ai, X) −! X bA_

j −! HomC(Aj , X)

agree with the transition maps in the ind-objects X bA_ and HomC(A,X), respectively; we’ll
omit the argument.

Proving that these maps assemble into an inverse map X bA_! HomC(A,X) requires a
non-trivial argument, since we’re working in an ∞-category, but there’s an easier way to show
that XbA_! HomC(A,X) is an equivalence: Equivalences are detected by π0HomInd(C)(Z,−),
where Z ranges through all compact objects of Ind(C); now any morphism from a compact
object factors through X bA_

i or HomC(Ai, X) for some i ∈ I, and so the observations above
will be enough.

To show (a), plug in X » A_: We obtain A_ bA_ » HomC(A,A
_) » (AbA)_. This proves

idempotence as a coalgebra, because (AbA)_ » A_ follows by dualising A » AbA. If j ! i
is large enough so that Aj ! Ai is trace-class, then the dual transition map A_

i ! A_

j is again
trace-class by Lemma 2.2(b). This shows (a).

For (b), since we’ve shown that A_ is an idempotent coalgebra in Ind(C), it follows that
j˚(1) is an idempotent algebra. Also A_ is a nuclear object in Ind(C), since every map Z ! A_

from a compact object factors through a trace-class morphism and is therefore trace-class itself.
Since 1 is nuclear too, it follows that j˚(1) is nuclear. X b j˚(1) » j˚(X) follows immediately
from the above equivalence X bA_ » HomC(A,X). Since the inclusion Ind(C)A ! Ind(C) is
lax monoidal by Lemma 2.12, it factors through a functor

Ind(C)A ! Modj˚(1)

`

Ind(C)
˘

.

Since j˚(1) is idempotent, Modj˚(1)(Ind(C)) ⊆ Ind(C) is the full sub-∞-category spanned by
the objects of the form X b j˚(1). Hence we also get an inclusion Ind(C)A ⊆ Modj˚(1)(Ind(C)).
On the other hand, every object of the form X b j˚(1) » j˚(X) is contained in Ind(C)A. This
finishes the proof of (b).

To show (c), we only need “colim”i∈I F (A
_

i ) » “colim”i∈I F (Ai)_. If Aj ! Ai is trace-class,
Lemma 2.2(c) provides a map F (Ai)_! F (A_

j ) in the reverse direction. By a formal argument
as above, this is enough to show the desired equivalence.
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§2.3. Generalities on refined localising invariants
Throughout this subsection and the next, we fix the following notation: Let PrLst denote the
∞-category of presentable stable ∞-categories and colimit-preserving functors. For a regular
cardinal κ, we denote by PrLst,κ ⊆ PrLst the non-full sub-∞-category spanned by the κ-compactly
generated presentable stable ∞-categories and those colimit-preserving functors that also
preserve κ-compact objects (equivalently, the right adjoint preserves κ-filtered colimits). We
equip these ∞-categories with the Lurie tensor product and we let Prdualst ⊆ PrLst denote the
non-full sub-∞-category spanned by the dualisable objects and the strongly continuous functors,
that is, those functors whose right adjoint still preserves all colimits.

We also let E ∈ CAlg(PrLst) be a rigid presentable stable symmetric monoidal ∞-category in
the sense of Definition 1.1. We denote

PrLE := ModE(Pr
L
st) and PrLE,κ := ModE(Pr

L
st,κ) ,

the latter assuming that E is κ-compactly generated. If E » Modk(Sp) is the ∞-category
of modules over some E∞-ring spectrum k, we’ll usually abbreviate these as PrLk and PrLk,κ,
respectively.

2.15. Localising motives over E. — We define the ∞-category of dualisable E-modules as
the module ∞-category CatdualE := ModE(Cat

dual
st ).(2.3) Following Efimov rEfi25, Definition 1.20s,

we let the ∞-category MotlocE of localising motives over E be the recipient of the universal
localising invariant on dualisable E-modules.

In the case where E » Modk(Sp) is the ∞-category of modules over some E∞-ring spectrum k,
we’ll write Motlock instead; this agrees with the ∞-category of localising motives over k defined
by Blumberg–Gepner–Tabuada rBGT16s.

2.16. Lemma. — Let M(−) : Q! MotlocE be a diagram such that Mi !Mj is trace-class for
all rational numbers i < j. Then

T ref
´

colim
i∈Q

Mi

¯

» “colim”
i∈Q

T (Mi) .

If D is locally rigid and its tensor unit is ω1-compact, then the same is true for Z⩾0-indexed
diagrams with trace-class transition maps.

Proof. This is almost tautological: Since MotlocE is rigid, (MotlocE )rig ! MotlocE is an equivalence.
Since the ind-object “colim”i∈QMi is a preimage of M under this equivalence, the first claim
follows. The second claim is completely analogous, since the additional assumptions imply
Drig » Nuc Ind(D), as we’ve seen in 1.3.

2.17. Why computing T ref is hard. — In general, we’re faced with at least two difficult
problems:
( ! ) For an arbitrary motive M ∈ MotlocE , it can be very hard to decompose M into pieces for

which resolutions as in Lemma 2.16 exist.
( !! ) Even if such resolutions can be found, computing T (Mi) (and the transition maps between

them) can still be a very hard problem.
(2.3)CatdualE can be defined without assuming that E is rigid, but usually it won’t agree with ModE(Cat

dual
st ).

See rEfi25, §1.3s.
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In §2.4, we’ll explain how to solve problem ( ! ) in many cases of interest, which will include
THHref(Q), THHref(LfnS(p)/S(p)) and THHref(Srxs). The entirety of §§3–4 below will then be
spent on problem ( !! ) for THHref(Q), and we will only be able to obtain an answer after base
change to ku.

But before we dive into the difficult calculations, let us discuss another easy case. To this
end, recall from rEfi25, Definition 1.48s that a dualisable E-module category X is called smooth
if the coevaluation Sp ! X_ bE X preserves compact objects, and proper if the evaluation
X b X_! E preserves compact objects. Here X_ denotes the dual of X as an E-module.

2.18. Lemma. — Let X be a dualisable E-module.
(a) X is smooth and proper in the sense above if and only if X is dualisable in CatdualE .(2.4)

(b) If this is the case, then T ref(X ) » T (X ).

Proof sketch. Assume first that X is smooth and proper. We’ll only explain why the coevaluation
and the evaluation over E , i.e. E ! X_ bE X and X bE X_! E , are functors in CatdualE ; the
triangle identities are then straightforward to verify. Since Sp! X_bEX is strongly continuous
by smoothness, the same will be true for the composition

E −! E b (X_ bE X ) −! X_ bE X

by rEfi25, Proposition 1.12(ii)s. So the coevaluation is a functor in CatdualE . Moreover, we have
X_ » Homdual

E (X , E) by rEfi25, Proposition 3.4(iii)s. Since E was assumed symmetric monoidal,
CatdualE admits an internal Hom, which necessarily lifts Homdual

E . Hence we get an evaluation
X bE X_! E in E as well.

Now assume that X is dualisable in CatdualE . Then E ! X_ bE X is strongly continuous,
hence it sends the tensor unit (which is compact as E is rigid) to a compact object. Then the
same must be true for Sp! X_ bE X , proving smoothness. For properness, we already know
that X bEX_! E is strongly continuous, so it remains to show the same for X bX_! X bEX_.
To this end, write

X bE X_ » (X b X_) bEbE E
and use that E b E ! E is strongly continuous by rigidity. This finishes the proof of (a).
Part (b) is an immediate consequence of this and Lemma 2.16, applied to the constant X -valued
diagram, which has trace-class transition maps since the identity on any dualisable object is
trace-class.

2.19. Corollary. — Let E ! X be a strongly continuous symmetric monoidal functor into
another rigid symmetric monoidal presentable stable ∞-category. If X is smooth and proper as
an E-module, then the forgetful functor CatdualX ! CatdualE preserves trace-class morphisms.

Proof. By Lemma 2.18(a) and the general fact that X_ » X (see rGR17, 1.9.2.1s or rEfi25,
Proposition 1.3s), we see that X is a self-dual E∞-algebra in CatdualE . The assertion then
becomes purely abstract nonsense: For X -modules M and N , the diagram

Homdual
X (M,X ) bX N Homdual

X (M,X ) bX (X bE N ) Homdual
E (M, E) bE N

Homdual
X (M,N ) Homdual

X (M,X bE N ) Homdual
E (M,N )

»

»

(2.4)Note that being dualisable in CatdualE is much stronger than being a dualisable E-module.

18

https://arxiv.org/pdf/2502.04123.pdf#theo.1.48
https://arxiv.org/pdf/2502.04123.pdf#theo.1.12
https://arxiv.org/pdf/2502.04123.pdf#theo.3.4
https://people.mpim-bonn.mpg.de/gaitsgde/Book/Vol1.pdf#subsubsection.1.9.2.1
https://arxiv.org/pdf/2502.04123.pdf#theo.1.3


§2.4. A recipe for computation

commutes, where the horizontal arrows in the left square are given by the unit N ! X bE N of
the “wrong way” adjunction between the forgetful functor and X bE − : CatdualE ! CatdualX .

§2.4. A recipe for computation

We continue to fix the notation from §2.3 as well as a symmetric monoidal localising invariant

T : MotlocE −! D .

From now on, we’ll additionally assume that D is locally rigid and its tensor unit is ω1-compact,
so that Drig » Nuc Ind(D) by rEfi25, Theorem 4.2s.

Our goal in this subsection is to explain a method to compute certain values of the refinement
T ref . This method is a more or less straightforward abstract reformulation of the method that
Efimov uses in his computations (see e.g. rEfi24, Talk 6s).

2.20. Motives of interest. — Let E ! X be a strongly continuous symmetric monoidal
functor into another rigid symmetric monoidal presentable stable ∞-category. Assume that X
is smooth and proper as an E-module. We wish to compute T ref(U) for localisations U ⊆ X
that arise as in 2.6. That is, there is some object V0 ∈ X with a left-unital multiplication such
that U is the full sub-∞-category spanned by those U ∈ X for which HomX (V0, U) » 0. Let us
additionally assume that the following is satisfied:
(V ) There exists a tower of E1-algebras in X ,

V0  − V1  − V2  − · · · ,

such that each Vr is dualisable in X and contained in the thick tensor ideal (that is, the
smallest full sub-∞-category closed under finite limits and colimits, retracts, and − bX
for all X ∈ X ) generated by V0. Moreover, we assume that for all r ⩾ 0, the induced map
Vr+1 b Vr ! Vr b Vr factors through the multiplication

Vr+1 b Vr
µ
−! Vr

as a map of Vr+1-Vr-bimodules.
The main example to keep in mind is the following: Suppose we’re given maps vi : Ii ! 1X for
i = 0, 1, . . . , n, where each Ii is dualisable in X . Then we can define Vr as the iterated cofibre

Vr := 1X /
`

v
αr,0

0 , . . . , v
αr,n
n

˘

for some entry-wise increasing sequence of (n+ 1)-tuples αr = (αr,1, . . . , αr,n) and equip the
tower tVrur⩾0 with Burklund-style E1-structures. We’ll discuss in §2.5 why this satisfies (V )
and how this allows us to recover many examples of interest, such as THHref(Q), THHref(Srxs),
and THHref(LfnS(p)/S(p)) (note that the last example doesn’t quite fit this situation, which will
cause us some pain).

2.21. Theorem. — Let E be rigid and let T : MotlocE ! D be a localising invariant such that
D is locally rigid and its tensor unit is ω1-compact. Let X and U be as in 2.20.
(a) The pro-object “lim”r⩾0 T (RModVr(X )) is idempotent over T (X ) and its transition maps

are trace-class.
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(b) T ref(U) is obtained from T (X ) by killing this idempotent pro-algebra. In particular, T ref(U)
sits inside the following cofibre sequence in Drig » Nuc Ind(D):

“colim”
r⩾0

T
`

RModVr(X )
˘_
−! T (X ) −! T ref(U) .

We start the proof of Theorem 2.21 with a few easy observations about the “closed comple-
ment” of U in X .

2.22. Lemma. — Let X and U be as in 2.20.
(a) The inclusion U ! X admits a left adjoint j˚ : X ! U , which can be canonically equipped

with a symmetric monoidal structure.
(b) If V ⊆ X denotes the kernel of j˚, then V is a tensor ideal and closed under colimits,

finite limits, and retracts in X . If S runs through a set of generators of X , then V0 b S
forms a set of generators of V.

(c) For all r ⩾ 0, the E1-algebra Vr is a compact object of X , and every left- or right-module
over Vr is contained in V.

Proof. Part (a) follows immediately from 2.6. Since j˚ is symmetric monoidal and preserves
all colimits, its kernel V must be a tensor ideal and closed under colimits, finite limits, and
retracts. Now let V ∈ V be an object such that

0 » HomX (V0 b S, V ) » HomX
`

S,HomX (V0, V )
˘

for all S. Since S runs through a set of generators of X , this implies HomX (V0, V ) » 0. Hence
also V ∈ U and so V » j˚(V ) » 0. This finishes the proof of (b).

To show (c), observe that any X ∈ X is dualisable if and only if it is compact (because in a
rigid presentable symmetric monoidal ∞-category idX : X ! X is trace-class if and only if it is
compact; see rRam24, Corollary 4.52s or rEfi25, Proposition 1.7s). Hence Vr is compact for all
r ⩾ 0. To show that any left- or right-Vr-module is contained in V , it suffices to show the same
for induced modules (i.e. those of the form Vr bX), since every module is a colimit of induced
ones. By the thick tensor ideal condition in 2.20(V ), we can furthermore reduce to objects of
the form V0 bX. Now if U ∈ U , then

HomX (V0 bX,U) » HomX
`

X,HomX (V0, U)
˘

» 0 ,

proving j˚(V0 bX) » 0, as desired.

2.23. Lemma. — For every r ⩾ 0, the base change functor

− bVr+1 Vr : RModVr+1(X ) −! RModVr(X )

is a trace-class morphism in CatdualX , hence also in CatdualE .

Proof. The additional assertion will follow immediately from Corollary 2.19 once we’ve shown
the rest. Writing RModVr(X ) » RModVr(Ind(X ω))bInd(Xω)X , we may reduce to the case where
X is compactly generated, as − bInd(Xω) X preserves trace-class morphisms by Lemma 2.2(b).
In the compactly generated case, we’ll even show that − bVr+1 Vr is trace-class in PrLX ,ω.

Recall from rL-HA, Remark 4.8.4.8s that RModVr+1(X ) is dualisable in PrLX with dual
LModVr+1(X ). Therefore, the base change functor is always trace-class in PrLX . The witnessing
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functor X ! LModVr+1(X ) bX RModVr(X ) » LModVr+1bV op
r
(X ) is the classifier of Vr as a left

module over Vr+1 b V op
r , or equivalently, a Vr+1-V − r-bimodule. If we work in PrLX ,ω instead,

then RModVr+1(X ) will no longer be dualisable, but we can still form the predual

HomPrLX ,ω

`

RModVr+1(X ),X
˘

» Ind
`

FunXω(RModVr+1(X )ω,X ω)
˘

» Ind
`

LModVr+1(X ω)
˘

,

where we’ve used rL-HA, Theorem 4.8.4.1s and the fact that Vr+1 ∈ X ω by Lemma 2.22(c).
Using rL-HA, Theorem 4.8.4.6s, we still have a functor

X −! Ind
`

LModVr+1(X ω)
˘

bX RModVr(X ) » RModVr
`

Ind
`

LModVr+1(X ω)
˘˘

in PrLX that classifies Vr has a right Vr-module in Ind(LModVr+1(X )). For the desired trace-class
property to hold, this functor needs to be contained in PrLX ,ω. That is, we need Vr to be a
compact object in RModVr(Ind(LModVr+1(X ω))).

To this end, recall our assumption 2.20(V ) that Vr+1 b Vr ! Vr b Vr factors through the
multiplication Vr+1 b Vr ! Vr as a map of Vr+1-Vr-bimodules. Consequently, Vr is a retract of
Vr b Vr in RModVr(Ind(LModVr+1(X ω))). This is enough to show compactness. Indeed, the
object Vr ∈ Ind(LModVr+1(X ω)) is compact(2.5) and so the induced right-Vr-module Vr b Vr
must be compact.

2.24. Remark. — As a consequence of the proof of Lemma 2.23 and Lemma 2.2(b), we see
that the functors

IndLModVr(X ω) bInd(Xω) X −! IndLModVr+1(X ω) bInd(Xω) X .

induced by the forgetful functors LModVr(X ω)! LModVr+1(X ω) are also trace-class in CatdualX ,
hence in CatdualE by Corollary 2.19.

The reader familiar with some of Efimov’s computations of refined invariants will have already
seen IndLModVr(X ω) bInd(Xω) X , albeit in disguise: For example, it is the abstract analogue
of Db

coh(Qrxs/xn) in Efimov’s computation of HC−,ref(Qrx±1s/Qrxs) (see e.g. rEfi24, Talk 6s).
Also note that the forgetful functors LModVr(X ω)! X ω will land in V by Lemma 2.22(c) and
so we get functors

IndLModVr(X ω) bInd(Xω) X −! V .

for all r ⩾ 0. These are compatible with the functors above.

2.25. Lemma. — With notation as above, the functors from Remark 2.24 induce an equiva-
lence of X -linear presentable ∞-categories

colim
r⩾0

`

IndLModVr(X ω) bInd(Xω) X
˘ »
−! V .

Here the colimit on the left-hand side is taken in CatdualX , or equivalently, in CatdualE or PrLst.

Proof. We’ll prove this under the assumption that X is compactly generated; to reduce to this
special case, apply Lemma 2.26 below for Ind(X ω)! X . Since X is rigid, compact objects are
closed under tensor products, since they coincide with the dualisable objects. By Lemma 2.22(b),
this implies that V is again compactly generated. By construction, IndLModVr(X ω) ! X

(2.5)By contrast, Vr is usually not compact in LModVr+1(X ).
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preserves compact objects, hence the same is true if we restrict the codomain to V . Using that
PrLst,ω ! PrLst preserves all colimits, we deduce that

L : colim
r⩾0

IndLModVr(X ω) −! V

is a functor in PrLst,ω. In particular, whether L is fully faithful can be checked on compact
objects. So let M and N be compact.

Writing colimr⩾0 Ind(LModVr(X ω)) » Ind(colimr⩾0 LModVr(X ω)), we may assume that M
and N are Vr-modules for some r. We must then show that

colim
s⩾r

HomVs(M,N)
»
−! HomX (M,N) .

is an equivalence. To this end, let us rewrite this map as

colim
s⩾r

HomVr

`

(Vr bVs Vr) bVr M,N
˘

−! HomVr

`

(Vr b Vr) bVr M,N
˘

.

For all s ⩾ r, consider Vr b Vr as a right-Vs+1-module via the right action on the first tensor
factor and as a left-Vs+1-module via the left action on the second tensor factor. In total,
we’ve produced a right-(Vs+1 b V op

s+1)-module structure on Vr b Vr. Since Vr b Vr is already
a right-(Vs b V op

s )-module via the same construction, the identity on Vr b Vr factors through
(Vr b Vr)bVs+1bV op

s+1
Vs b V op

s . By Assumption 2.20(V ), Vs+1 b Vs+1 ! Vs b Vs factors through
Vs+1 as a map of Vs+1-Vs+1-bimodules, or equivalently, as a map of left-Vs+1 b V op

s+1-modules.
This shows that the identity on Vr b Vr factors through

(Vr b Vr) bVs+1bV op
s+1

Vs+1 » Vr bVs+1 Vr .

This factorisation works as Vr-Vr-bimodules, since we haven’t touched the “outer” Vr-Vr-
bimodule structure anywhere and have only worked with the “inner” bimodule structures. Thus,
the colimit diagram above can be intertwined with the constant HomVr((Vr b Vr) bVr M,N)-
valued diagram, which proves that we get the desired equivalence.

Hence L is fully faithful. Once we know this, essential surjectivity follows immediately from
Lemma 2.22(b), so we win.

2.26. Lemma. — Let X ! X ′ be a symmetric monoidal colimit-preserving functor into
another rigid presentable stable symmetric monoidal ∞-category X ′. Let V ′

0 denote the image
of V0, let U ′ := (X ′)V

′
0 ⊆ X ′ and let V ′ be the kernel of the left adjoint X ′ ! U ′ of the inclusion.

Then the induced functor
V bX X ′ »

−! V ′

is an equivalence of ∞-categories.

Proof. It’s enough to show this in the case where X is compactly generated, since the general
case will follow by considering Ind(X ω)! X ! X ′. By Lemma 2.22(b), V is a tensor ideal and so
the inclusion V ! X is X -linear. Note that its right adjoint is again X -linear. Indeed, the right
adjoint is given by fib(X ! j˚(X)) for all X ∈ X , so we must show that j˚(X)bY ! j˚(XbY )
is an equivalence for all Y ∈ X . Since we assume X to be compactly generated, it suffices to
show this in the case Y ∈ X ω, as both sides commute with filtered colimits. But then Y is
dualisable as X is rigid. Since U ′ is stable under tensoring with dualisable objects, we obtain
j˚(X) b Y » j˚(j˚(X) b Y ) » j˚(X b Y ) from 2.6, as desired.
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It follows that V bX X ! X ′ is fully faithful, since we can now just base change the fact
that the unit is an equivalence. Its essential image is clearly contained in V ′, and it’s clear from
Lemma 2.22(b) that Vω bX X ′ ! V ′ is essentially surjective.

Proof of Theorem 2.21. By Lemma 2.23 and Lemma 2.2(b) applied to the symmetric monoidal
functor T : CatdualX » ModX (Cat

dual
E ) ! ModT (X )(D), the transition maps of the pro-object

“lim”r⩾0 T (RModVr(X )) are trace-class morphisms in ModT (X )(D). To prove (a), it will thus be
enough to check that the dual ind-object is an idempotent coalgebra.

To see this, write RModVr(X ) » RModVr(Ind(X ω)) bInd(Xω) X . We’ve seen in the proof
of Lemma 2.23 that the predual of RModVr(Ind(X ω)) in PrLInd(Xω),ω is IndLModVr(X ω). Now
consider the diagram of symmetric monoidal functors

PrLInd(Xω),ω CatdualX ModX (MotlocE ) ModT (X )(D)

CatdualInd(Xω) MotlocInd(Xω)

−bInd(Xω)X T

In general, none of them preserves preduals, but once we pass to “colim”r⩾0 this isn’t a
problem anymore by Lemma 2.2(c). Thus, it will be enough to check that the image of
“colim”r⩾0 IndLModVr(X ω) is idempotent in Ind(MotlocInd(Xω)).

For ease of notation, let us now replace X by Ind(X ω), thereby assuming that X is
compactly generated. Since “colim”r⩾0 IndLModVr(X ω) has trace-class transition maps and
Nuc Ind(MotlocX ) » MotlocX by Efimov’s rigidity theorem, it will be enough to show that
colimr⩾0 IndLModVr(X ω) » V is idempotent in MotlocX . We claim that V is already idem-
potent in CatdualX . To see this, just observe that the same argument as in Lemma 2.25 also
proves that

colim
r⩾0

IndLModVrbVr(X ω)
»
−! V

is an equivalence of ∞-categories. This finishes the proof of (a).
Let us now show (b). In the following, we’ll use several times (and in a somewhat confusing

way) that Nuc Ind(ModX (MotlocE )) » ModX (MotlocE ) by Efimov’s rigidity theorem.
The proof of (a) shows that “lim”r⩾0RModVr(X ) is idempotent in Pro(ModX (MotlocE )),

its dual ind-object has nuclear transition map, and the dual ind-object is sent to V un-
der Nuc Ind(ModX (MotlocE )) » ModX (MotlocE ). Since V ! X ! U becomes a cofibre se-
quence in MotX (MotlocE ), it follows that the preimage of U under Nuc Ind(ModX (MotlocE )) »

ModX (MotlocE ) is obtained from X by killing the pro-idempotent “lim”r⩾0RModVr(X ). This
is necessarily also true as E∞-X -algebras, since the E∞-structure will be idempotent over X
by Lemma 2.14(b) and thus unique. Since any symmetric monoidal functor preserves killing
idempotent pro-algebras with trace-class transition maps by Lemma 2.14(c), the statement
of (b) follows.

§2.5. Burklund’s E1-structures and square-zero extensions

In this subsection we show that tensor products of two Burklund-style E1-structures on quotients
are often trivial square zero algebras. We then use this technical result to make Theorem 2.21
applicable in many cases of interest.
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For the abstract setup, let C be a presentable stable E2-monoidal ∞-category and v : I ! 1

be a morphism in C such that 1/v admits a right-unital multiplication. Fix α0 ⩾ 3, so that
1/vα0 admits a preferred E2-algebra structure by rBur22, Theorem 1.5s. The same theorem
shows that 1/vα admits a preferred E1-algebra structure for all α ⩾ 2. Via base change, we get
an E1-structure on 1/vα0 b 1/vα in the E1-monoidal stable ∞-category LMod1/vα0 (C).

2.27. Proposition. — With notation and assumptions as above, suppose additionally that C
is rigid, I is dualisable in C, and α ⩾ α0 + 3.
(a) If we equip 1/vα0 ‘Σ(Ibα/vα0) with the trivial square-zero E1-structure over 1/vα0 , then

the equivalence of left 1/vα0-modules

1/vα0 b 1/vα » 1/vα0 ‘ Σ(Ibα/vα0)

lifts canonically to an equivalence of E1-algebras in LMod1/vα0 (C). Under this iden-
tification, the multiplication 1/vα0 b 1/vα ! 1/vα0 becomes the augmentation map
1/vα0 ‘ Σ(Ibα/vα0)! 1/vα0.

(b) For all α′ ⩾ α ⩾ α0 + 3, the map 1/vα0 b 1/vα
′
! 1/vα0 b 1/vα agrees with the map

of trivial square-zero extensions induced by vα
′−α : Ibα′

/vα0 ! Ibα/vα0, as maps of
E1-algebras in LMod1/vα0 (C).

2.28. Remark. — The bound α ⩾ α0 +3 doesn’t seem optimal and the author suspects that
Proposition 2.27 might already be true for α ⩾ α0. It also seems reasonable that the result
should be true for any compatible E1-structures on 1/vα0 and 1/vα, but we don’t know how to
show this.

2.29. Remark. — Since the bounds α0 ⩾ 3 and α ⩾ α0 + 3 ensure that the E1-algebra
structures on 1/vα0 and 1/vα refine to E2-algebra structures, the multplication map in Propo-
sition 2.27(a) is canonically a map of E1-algebras. The identification with the augmentation
1/vα0 ‘ Σ(Ibα/vα0)! 1/vα0 also holds as E1-algebra maps (as we’ll see in the proof).

Proof of Proposition 2.27. Recall rBur22, Constructions 4.7 and 4.8s: Let rC := Def(C,Q) be the
deformation of C that Burklund uses. The specific construction is irrelevant for the purpose of
this proof; the reader only needs to know that rC is a presentable stable E2-monoidal ∞-category
and comes with E2-monoidal functors ν : C ! rC (which is non-exact) and (−)τ=1 : rC ! C
(which preserves colimits and is therefore exact) such that ν(−)τ=1 » idC. Let furthermore
r1 := ν(1) denote the tensor unit of rC and let rI := Σ−1ν(ΣI). Even though ν is non-exact,
ν(1)! ν(1/v)! ν(ΣI) is still a cofibre sequence in rC and so ν(v) : ν(I)! r1 factors through
a map

rv : rI −! r1 .

Then rv is a deformation of v in the sense that rvτ=1 » v.(2.6) It will thus be enough to show the
assertions with v replaced by rv : rI ! r1.

Burklund constructs E1-structures on r1/rvα for α ⩾ 2 using the obstruction theory from
rBur22, Proposition 2.4s in rC. The reason to replace C and v by their deformations rC and rv is
that for the deformed versions all obstructions vanish (because the obstruction group vanishes),
and the witnessing nullhomotopies are unique (because the next homotopy group also vanishes).

(2.6)Note that rv is usually not the trivial deformation ν(v), as the canonical map ν(I)! rI is usually not an
equivalence. This is crucial to make Burklund’s construction work.
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The base-changed E1-structure on r1/rvα0 b r1/rvα is then obtained via Burklund’s obstruction
theory in the E1-monoidal(2.7) presentable stable ∞-category LMod

r1/rvα0 (rC). The main step to
prove both (a) and (b) is to show that in this case too all obstructions vanish and the witnessing
nullhomotopies are unique. More precisely, we’ll show that for all k ⩾ 2 and all α′ ⩾ α ⩾ α0+3,

πiHomLMod
r1/rvα0 (

rC)

´

Σ−3
`

Σ2(rI/rvα0)bα′˘bk
, r1/rvα0 b r1/rvα

¯

„= 0 for i ∈ t0, 1u .

To show this, we use that r1/rvα0 b− : rC ! LMod
r1/rvα0 (rC) is left adjoint to the forgetful functor,

that r1/rvα0 b r1/rvα » r1/rvα0 ‘ Σ(rIbα/rvα0) as left-r1/rvα0-modules, and that rI is still dualisable,
with dual rI_ » Σν(Σ−1I_). The left-hand side above can then be rewritten as follows:

πiHom
rC

´

Σ2k−3
rIbα′k, r1/rvα0 ‘ Σ(rIbα/rvα0)

¯

„= πiHom
rC

´

Σ2k−3
rIbα′k, r1/rvα0

¯

‘ πiHom
rC

´

Σ2k−2
rIbα′k b (rI_)bα′

, r1/rvα0

¯

„= πiHom
rC

´

Σ−α′k+2k−3ν(X), r1/rvα0

¯

‘ πiHom
rC

´

Σ−α′k+α+2k−2ν(Y ), r1/rvα0

¯

,

where X » (ΣI)bα′k and Y » (ΣI)bα′kb(Σ−1I_)bα. According to rBur22, Lemma 4.8s (which
is applicable thanks to our rigidity assumption on C), both summands on the right-hand side
vanish for i ∈ t0, 1u as soon as α′k − α− 2k + 1 ⩾ α0. Under our assumptions α′ ⩾ α ⩾ α0 + 3
and k ⩾ 2, we can estimate

α′k − α− 2k + 1 ⩾ (α0 + 3)(k − 1)− 2k + 1 = (k − 1)α0 + k − 2 ⩾ α0 ,

as desired. This shows that indeed all obstructions vanish (because the obstruction group π0
vanishes) and the witnessing nullhomotopies are unique (because π1 also vanishes).

Now (b) as well as the first part of (a) immediately follow. Indeed, in the case α′ = α, the
vanishing result above combined with rBur22, Remark 2.5s shows that the E1-structure on
r1/rvα0 b r1/rvα is unique, so it has to be the trivial square zero structure. For general α′ ⩾ α, the
same argument shows that the E1-map r1/rvα0 b r1/rvα

′
! r1/rvα0 b r1/rvα is unique, proving (b).

To show the second part of (a), observe that, with notation as above, we must also have

πiHom
rC

´

Σ−α′k+2k−3ν(X), r1/rvα0

¯

„= 0 for i ∈ t0, 1u .

This precisely ensures that r1/rvα0 b r1/rvα ! r1/rvα0 is unique as well, and so it has to be the
augmentation map.

2.30. Corollary. — If I is dualisable, α ⩾ α0 + 3, and α′ ⩾ α+ α0, then

1/vα0 b 1/vα
′
−! 1/vα0 b 1/vα

factors through the tensor unit 1/vα0 as a map of E1-algebras in LMod1/vα0 (C).

Proof. By Proposition 2.27(b), it’s enough to check that vα′−α : Ibα′
/vα0 ! Ibα/vα0 is zero

in LMod1/vα0 (C) for α′ ⩾ α + α0. This reduces to vα0 : Ibα0/vα0 ! 1/vα0 being zero in
LMod1/vα0 (C). Since 1/vα0 b − : C ! LMod1/vα0 (C) is left adjoint to the forgetful functor,
this is equivalent to vα0 : Ibα0 ! 1/vα0 being zero in C, which is true by construction.

(2.7)Burklund’s paper assumes an E2-monoidal structure, but for the purpose of rBur22, §2s only an E1-monoidal
structure is necessary.
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Thanks to Corollary 2.30, it is now easy to construct examples where Assumption 2.20(V )
is satisfied and thus Theorem 2.21 is applicable.

2.31. Example. — Let m be a positive integer that is either coprime to 2 or divisible
by 4. Then S/m admits a right-unital multiplication and so Burklund’s construction applied to
m : S! S provides a tower of E1-algebras

S/m2  − S/m3  − S/m4  − · · · .

Up to passing to an appropriate subtower, this satisfies Assumption 2.20(V ). Indeed, dualis-
ability and the thick tensor ideal condition are clear and the factorisation condition follows
from Corollary 2.30 above.

Thus, for any E∞-ring spectrum k, Theorem 2.21 shows that THHref(kr1/ms/k) is obtained
from THH(k/k) » k by killing the idempotent pro-algebra “lim”α⩾1THH((k b S/mα)/k). In
particular, there’s a cofibre sequence

“colim”
α⩾1

THH
`

(k b S/mα)/k
˘_
−! k −! THHref

`

k
“

1
m

‰

/k
˘

.

in Nuc Ind(Modk(Sp)
BS1

). Since THHref(−/k) commutes with filtered colimits, this also allows
us to compute THHref(k b Q/k) » colimm∈NTHHref(kr1/ms/k).

2.32. Example. — If k is any E∞-ring spectrum, we can compute THHref(krxs/k) as follows:
Let P1

k denote the flat projective line over k, which is smooth and proper over k. We can
construct a tower of E1-algebras

krx−1s/x−1  − krx−1s/x−2  − krx−1s/x−3  − · · ·

either by hand (construct krx−1s as a graded E∞-k-algebra with x−1 in graded degree −1,
then truncate the grading) or by applying Burklund’s construction to OP1

k
(−1)! OP1

k
(this

will only give the tower from the second step onwards, but this is no problem). In either case,
Assumption 2.20(V ) will be satisfied and so Theorem 2.21 provides a cofibre sequence

“colim”
α⩾1

THH
`

(krx−1s/x−α)/k
˘_
−! THH(P1

k/k) −! THHref
`

krxs/k
˘

in Nuc Ind(Modk(Sp)
BS1

).

As a final example, let us explain how Theorem 2.21 applies to THHref(LfnS(p)/S(p)), where
Lfn denotes telescopic localisation to chromatic height ⩽ n. First we need a technical lemma:

2.33. Lemma. — Let m ⩾ 2 and n ⩾ 0. Let V ′ ! V be a map of Em+1-algebras whose
underlying spectra are of type n. Let v : ΣNV ! V be a vn-self map of V and v′ : ΣN ′

V ′ ! V ′

a vn-self map of V ′.
(a) Up to replacing v′ by a suitable power, the induced map v′ bV ′ V : ΣN

′
V ! V can be

chosen to be a power of v.
(b) Suppose v is the fourth power of another vn-self map of V , so that V/v admits a right-

unital multiplication in LModV (Sp(p)). Furthermore, assume that v′ is as in (a) and V ′/v′
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admits a right-unital multiplication in LModV ′(Sp). Then the canonical left-V -module
map

V ′/v′m+1 bV ′ V −! V/vm+1 .

can be upgraded to an Em-algebra map in LModV (Sp), where we equip V/vm+1 and
V ′/v′m+1 with Burklund’s Em-structures in LModV (Sp) and LModV ′(Sp), respectively.

Proof sketch. Part (a) follows immediately from asymptotic uniqueness of vn-self maps (see
rL-Ch, Lemma 27.10s for example).

To show (b), let us denote V/v′m+1 := V ′/v′m+1 bV ′ V for short. First note that the claim
is not completely automatic, since the Em-structures on V/vm+1 and V/v′m+1 are constructed
via different deformation categories. More precisely, let Q and Q′ be the classes of morphisms
in LModV (Sp)

ω that become split epimorphisms upon − bV V/v or − bV V/v
′, respectively.

Then the Em-structure on V/vm+1 is constructed via Def(LModV (Sp);Q), whereas for V/v′m+1

we use Def(LModV (Sp);Q′).
Our assumptions on v and v′ imply that V/v′ ! V/v can be turned into an E1-map in

LModV (Sp). This need not be compatible with the E1-structures on V/vm+1 or V/v′m+1, but it
is enough to ensure Q′ ⊆ Q, because any morphism that becomes split after −bV V/v

′ will also
become split after (− bV V/v

′) bV/v′ V/v » − bV V/v. Sheafification then induces a strongly
continuous Em+1-monoidal functor Def(LModV (Sp);Q′)! Def(LModV (Sp);Q) which fits into
a commutative diagram

Def
`

LModV (Sp);Q′˘ Def
`

LModV (Sp);Q
˘

LModV (Sp)

ν′ ν

where ν and ν ′ denote the respective Yoneda embeddings.
Let us now denote deformations in Def(LModV (Sp);Q) by (r−) as in the proof of Propo-

sition 2.27. Via the functor above and rBur22, Proposition 2.4s, we can write rV /rv′m+1

as an iterated pushout of Em-algebras in Def(LModV (Sp);Q). This yields a sequence of
obstructions to constructing an Em-algebra map rV /rv′m+1 ! rV /rvm+1. Since the functor
Def(LModV (Sp);Q′)! Def(LModV (Sp);Q) intertwines ν ′ and ν, the obstructions are still of
the form that automatically vanishes.

2.34. Example. — For all m ⩾ 2 and n ⩾ 0 let us construct a tower of Em-algebras

V (n)0  − V (n)1  − V (n)2 −! · · ·

of the form V (n)r » S/(pαr,0 , v
αr,1

1 , . . . , v
αr,n
n ), such that Assumption 2.20(V ) is satisfied. Note

that the dualisability condition in 2.20(V ) is trivial and the thick tensor ideal condition is
automatic by the thick subcategory theorem (see rL-Ch, Theorem 26.8s for example). So we
only have to construct the tower and verify the factorisation condition.

We use induction on n. Suppose we’ve already constructed a tower of Em+1-algebras
(V (n − 1)r)r⩾0 with the desired properties. We’ll write Vr := V (n − 1)r for brevity. Using
Lemma 2.33 for Vr+1 ! Vr, we can inductively construct vn-self maps vn,r : ΣNrVr ! V r such
that each of them is the fourth power of another vn-self map and the quotients

V r := Vr/v
2r(m+1)
n,r
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fit into a tower of Em-algebras. Note that this would already work with Vr/v
m+1
n,r ; the extra

factor in the exponent will only be used for the factorisation condition.
As in the proof of Lemma 2.25, consider the right-Vr+1bV op

r -module structure on V r+1bV r

given by its “inner” bimodule structure. Since Vr+1 b Vr ! Vr b Vr factors through Vr by the
inductive hypothesis, we see that V r+1 b V r ! V r b V r factors through

`

V r+1 b V r

˘

bVr+1bV op
r
Vr »

`

V r+1 bVr+1 Vr
˘

bVr V r

as a map of V r+1-V r-bimodules. If we now consider the composition V r+2 b V r ! V r b V r,
we see that it factors through

Vr/v
2r+2(m+1)
n,r+1 bVr V r −! Vr/v

2r+1(m+1)
n,r+1 bVr V r .

This, in turn, factors through V r as a map of E1-algebras in RModV r(Sp). Indeed, this follows
from Corollary 2.30 via base change along Vr/v2

r(m+1)
n,r+1 ! Vr/v

2r(m+1)
n,r » V r. So we get the

desired factorisation for V r+2 b V r ! V r b V r. Thus, if we put V (n)r := V 2r, we get a tower
of the desired form.

With these disgusting technicalities out of the way, we can finally apply Theorem 2.21: We
deduce that THHref(LfnS(p)/S(p)) is obtained from S(p) by killing an idempotent pro-algebra of
the form “lim”r⩾0THH(S/(pαr,0 , v

αr,1

1 , . . . , v
αr,n
n )). In particular, we get a cofibre sequence

“colim”
r⩾0

THH
`

S/(pαr,0 , v
αr,1

1 , . . . , v
αr,n
n )

˘_
−! S(p) −! THHref

`

LfnS(p)/S(p)
˘

in Nuc Ind(SpBS
1

(p) ).
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§3. Refined THH and TC− over ku
We’ve seen in Example 2.31 that to compute THHref(Q), one essentially has to compute an
ind-object of the form “colim”α⩾2THH(S/pα)_ for all primes p. This seems currently out of
reach. However, after base change to ku, we can get some control over THH((ku b S/pα)/ku)
thanks to the results from rWag25as, and so THHref(ku b Q/ku) is approachable.

In this section we study TC−,ref(ku b Q/ku) and TC−,ref(KU b Q/KU), which contain the
same information as THHref(ku b Q/ku) and THHref(KU b Q/KU) by Lemma 3.2 below. In
§3.1, we compute the homotopy groups

A˚
ku := π2˚ TC

−,ref(ku b Q/ku) and AKU := π0TC
−,ref(KU b Q/KU)

in terms of certain q-Hodge filtrations fil⋆q9Hdg q9dR(Z/pα)/Zp
and the associated q-Hodge com-

plexes q9Hdg(Z/pα)/Zp
that we get from the chosen E1-structures on S/pα. In §3.2 we’ll explain

how to describe these objects explicitly. These explicit descriptions will then be used in §4 to
finish the proof of Theorems 1.10 and 1.11.

3.1. Convention — Throughout §§3–4, all (q-)de Rham complexes and q-Hodge complexes
relative to a p-complete ring will be implicitly p-completed.

§3.1. q-Hodge filtrations and TC−,ref (ku b Q/ku)

We begin by showing that for complex orientable ring spectra k, THHref(k b Q/k) with its
S1-action contains the same information as TC−,ref(k b Q/k).

3.2. Lemma. — Let k be a complex orientable E∞-ring spectrum, equipped with trivial
S1-action, and let t ∈ π−2(k

hS1
) be any complex orientation. Then taking S1-fixed points

defines a symmetric monoidal equivalence

(−)hS
1
: Modk(Sp)

BS1 »
−! Mod

khS1 (Sp)^t ,

where ModkhS1 (Sp)^t denotes ∞-category of t-complete khS1-module spectra, which we equip
with the t-completed tensor product − b̂

khS1 −.

Proof. By construction (−)hS
1 is lax symmetric monoidal. To see that it is strictly symmetric

monoidal, we must check whether MhS1
b̂
khS1 NhS1

! (M bk N)hS
1 is an equivalence. As

both sides are t-complete, this can be checked modulo t, where it follows from rHRW22,
Lemma 2.2.10s for example.

By definition, (−)hS
1
: SpBS

1
! Sp has a left adjoint, given by the symmetric monoidal

functor const : Sp ! SpBS
1 , which sends a spectrum X to itself equipped with the trivial

S1-action. By general nonsense about how symmetric monoidal adjunctions pass to module
categories, we see that (−)hS

1
: Modk(Sp)

BS1
» Modk(Sp

BS1
) ! Mod

khS1 (Sp) admits a left
adjoint L, which is given as the composition

L : Mod
khS1 (Sp)

const
−−−! Mod

khS1 (SpBS
1
)

−b
khS

1 k
−−−−−−! Modk

`

SpBS
1˘

» Modk(Sp)
BS1

.

In particular, on underlying k-modules, L is simply given by (−)/t. Since (−)/t is conservative
on t-complete khS1-modules, it follows that L : Mod

khS1 (Sp)^t ! Modk(Sp)
BS1 must be con-

servative too. Furthermore, the counit c : L((−)hS
1
) ⇒ id is an equivalence, as follows from

29

https://arxiv.org/pdf/2206.11208.pdf#block.2.2.10


§3. Refined THH and TC− over ku

rHRW22, Lemma 2.2.10s again. Thus (−)hS
1 must be fully faithful. We conclude using the

standard fact that an adjunction in which the right adjoint is fully faithful and the left adjoint
is conservative must be a pair of inverse equivalences.

We’ll now set out to compute π˚ TC
−,ref(ku b Q/ku) and π˚ TC

−,ref(KU b Q/KU).

3.3. Outline of the computation. — For convenience, let’s call a positive integer m high-
powered if its prime factorisation m =

∏
p p

αp has the following property: For all primes p > 2

either αp = 0 or αp ⩾ 2 and for p = 2 either α2 = 0 or α2 is even and ⩾ 4. We let N denote
the set of high-powered positive integers, partially ordered by divisibility.

Since S/4 and S/p admit right-unital multiplications, we can use Burklund’s general con-
struction rBur22, Theorem 1.5s(3.1) to construct E1-structures on

S/m »
∏
p

S/pαp

for every high-powered m. These assemble into a functor S/− : N ! AlgE1
(Sp). In the

following we’ll write ku/m := ku b S/m and KU/m := KU b S/m, where it is understood that
the E1-structure is always base changed from the one on S/m above. By Example 2.31 and
Lemma 3.2, we get a cofibre sequence

“colim”
m∈(N )op

TC−`

(ku/m)/ku
˘_
−! kuhS

1
−! TC−,refpku b Q/kuq

(where now (−)_ := Hom
kuhS

1 (−, kuhS1
) denotes the dual in kuhS

1-modules) and a similar one
for KU. To compute the pro-object on the left, we’ll proceed in three steps:
(a) We compute the homotopy groups π˚ TC

−((ku/m)/ku) and π˚ TC
−((KU/m)/KU) using

rWag25a, Theorem 4.27s. This will be the content of Corollary 3.8.
(b) We compute π˚ TC

−((ku/m)/ku)_ and π˚ TC
−((KU/m)/KU)_, essentially showing that

in this case taking duals commutes with π˚ in a derived way. This will be achieved in
Corollary 3.10.

(c) We show that pro-idempotence and the transition maps being trace-class passes to
homotopy groups in this case. This will be the content of Corollaries 3.12 and 3.13.

This leads to a preliminary description of the homotopy rings π˚ TC
−,ref(ku b Q/ku) and

π˚ TC
−,ref(KU b Q/KU) in Theorem 3.14.

We begin with step (a).

3.4. Reduction to the p-torsion free case. — Decomposing m =
∏
p p

αp into prime
powers, we have

TC−`

(ku/m)/ku
˘

»
∏
p

TC−`

(ku/pαp)/ku
˘

,

so we may reduce to the case where m = pα is a high-powered prime power. Let us re-
mark that TC−((ku/pα)/ku) is automatically p-complete. Indeed, it is (β, t)-complete and
TC−((ku/pα)/ku)/(β, t) » HH((Z/pα)/Z) is pα-torsion, hence p-complete.

(3.1)We could also use rBur22, Theorem 3.2s to get another tower of E1-algebras S/8  S/16  S/32  · · · .
This one is potentially different from ours (as different deformation categories are used in the construction). It
will become apparent in 3.4 why we made our choice.
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To compute TC−((ku/pα)/ku), we lift to a p-torsion free case. Let Zptxu∞ be the free
p-complete perfect δ-ring on a generator x. Since the p-completed cotangent complex of Zptxu∞
vanishes, it lifts uniquely to a p-complete connective E∞-ring spectrum, which we’ll denote
SZptxu∞ . By rBur22, Theorem 1.5s, we get a tower of E1-algebras in SZptxu∞-modules

SZptxu∞/x
2  − SZptxu∞/x

3  − SZptxu∞/x
4  − · · ·

for p > 2; the case p = 2 needs powers of x2 instead. The map of perfect δ-rings Zptxu∞ ! Zp
sending x 7! p lifts uniquely to an E∞-map SZptxu∞ ! Sp. If we base change the tower above
along this map, we get the tower of E1-algebras (S/pα) from 3.3. Indeed, this follows from the
uniqueness statement in rBur22, Theorem 1.5s.(3.2)

Now put kuZptxu∞ := (ku b SZptxu∞)^p . Then THH(−/kuZptxu∞)^p » THH(−/ku)^p holds by
the same argument as in rBMS19, Proposition 11.7s and so we get a base change equivalence

´

TC−`

(kuZptxu∞/x
α)/ku

˘

bkuZptxu∞
ku^

p

¯^

(p,t)

»
−! TC−`

(ku/pα)/ku
˘

.

3.5. A q-Hodge filtration for Z/m. — We can apply rWag25a, Theorem 4.17s to
Zptxu∞/x

α with its spherical E1-lift SZptxu∞/x
α to obtain a filtration fil⋆q9Hdg q9dR(Zptxu∞/xα)/Zp

on the p-completed derived de Rham complex of Zptxu∞/x
α. This filtration doesn’t depend

on the choice of spherical lift (only its existence) and q-deforms the Hodge filtration on
dR(Zptxu/xα)/Zp

. We then construct a filtration on q9dR(Z/pα)/Zp
as the base change

fil⋆q9Hdg q9dR(Z/pα)/Zp
:=

´

fil⋆q9Hdg q9dR(Zptxu∞/xα)/Zp
bL

Zptxu∞
Zp

¯^

(p,q−1)
.

For a general high-powered positive integer m ∈ N with prime factorisation m =
∏
p p

αp , we
put

fil⋆q9Hdg q9dR(Z/m)/Z :=
∏
p

fil⋆q9Hdg q9dR(Z/pαp )/Zp
,

and denote its completion by fil⋆q9Hdg q9d̂R(Z/m)/Z. We’ll verify in Lemma 3.7 below that
the filtered object fil⋆q9Hdg q9dR(Z/m)/Z is indeed a q-Hodge filtration in the sense of rWag25b,
Definition 3.2s, as the notation suggests.

We regard these filtrations as filtered modules over the filtered ring (q− 1)⋆ZJq− 1K. In the
following, this filtered ring will be identified with the graded ring π2˚(ku

hS1
) „= ZrβsJtK, where

t sits graded degree −1 and plays the role of the filtration parameter, β sits in graded degree 1,
and βt = (q − 1). We will also consider the q-Hodge complex

q9Hdg(Z/m)/Z := colim

ˆ

fil0q9Hdg q9dR(Z/m)/Z
(q−1)
−−−! fil1q9Hdg q9dR(Z/m)/Z

(q−1)
−−−! · · ·

˙^

(q−1)

as in rWag25b, 3.5s.

3.6. Remark. — Let m =
∏
p p

αp be an integer such that for all primes p > 2 either αp = 0
or αp ⩾ 3 and for p = 2 either α2 = 0 or α2 is even and ⩾ 6. Then the E1-structure on S/m
can be upgraded to an E2-structure. We can thus apply rWag25a, Theorem 4.27s directly

(3.2)Burklund only shows that the objects in the tower are unique and therefore satisfy base change. But the
same argument shows that the transition maps too are unique, so they satisfy base change as well.
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to obtain another q-Hodge filtration on q9dR(Z/m)/Z, without having to go through the base
change above. However, this q-Hodge filtration agrees with the one from 3.5.

Indeed, note that the E1-structure on SZptxu∞/x
αp also admits an E2-upgrade, compatible

with the one on S/pαp . Then the assertion follows by naturality and the observation that the
solid even filtration on the already even E1-ring spectrum TC−

■ ((kuZptxu∞/x
αp)/ku) necessarily

agrees with the double-speed Whitehead filtration τ⩾2⋆.

3.7. Lemma. — The filtration fil⋆q9Hdg q9dR(Z/m)/Z is a q-Hodge filtration in the sense of
rWag25b, Definition 3.2s. Moreover, q9dR(Z/m)/Z and q9Hdg(Z/m)/Z are static (q − 1)-torsion
free rings and the q-Hodge filtration is a descending filtration by ideals.

Proof. Let us verify the conditions from rWag25b, Definition 3.2s. For any prime p, the
non-p-completed derived q-de Rham complex q9dR(Z/pαp )/Z vanishes after (−)r1/ps

^

(q−1), as
(Z/pαp)r1/ps „= 0. Hence it also vanishes after (−)^p r1/ps

^

(q−1), as any module over the trivial ring
is trivial. It follows that q9dR(Z/pαp )/Z is already p-complete and thus agrees with q9dR(Z/pαp )/Zp

.
With this observation, condition (a) of rWag25b, Definition 3.2s is straightforward to verify.

Condition (b) follows via base change from Zptxu∞/x
αp . The other two conditions are vacuous,

since the rationalisations vanish. Therefore, fil⋆q9Hdg q9dR(Z/m)/Z is indeed a q-Hodge filtration.
To verify that fil⋆q9Hdg q9dR(Z/m)/Z is degree-wise static and (q− 1)-torsion free, just observe

that its reduction modulo (q − 1) is fil⋆Hdg dR(Z/m)/Z, which is degree-wise static. Via base
change from Zptxu∞/x

αp it’s then clear that fil⋆q9Hdg q9dR(Z/m)/Z must be a descending filtration
by ideals. By construction, this implies that q9Hdg(Z/m)/Z is a static and (q − 1)-torsion free
ring, as claimed.

The upshot of 3.4–3.7 is the following.

3.8. Corollary. — Let m ∈ N be a high-powered positive integer. Then the spectra
TC−((ku/m)/ku) and TC−((KU/m)/KU) are concentrated in even degrees and we have

π2˚ TC
−`

(ku/m)/ku
˘

„= fil⋆q9Hdg q9d̂R(Z/m)/Z ,

π2˚ TC
−`

(KU/m)/KU
˘

„= q9Hdg(Z/m)/Zrβ±1s .

Proof. It’s enough to check evenness modulo t, so we may pass from TC− to THH. Since
THH((ku/m)/ku) is connective, we may further pass to THH((ku/m)/ku)/β » HH((Z/m)/Z),
which is indeed even. This shows evenness for THH((ku/m)/ku) and then the same follows for
THH((ku/m)/ku)r1/βs » THH((KU/m)/KU).

By decomposing m into prime factors as in 3.4 and using the base change equivalence, we
get a map

fil⋆q9Hdg q9d̂R(Z/m)/Z ! π2⋆TC
−((ku/m)/ku) .

Whether this is an equivalence can be checked modulo β, where we recover the well-known fact
that the even homotopy groups of TC−((ku/m)/ku)/β » HC−((Z/m)/Z) are the completed
Hodge filtration fil⋆Hdg d̂R(Z/m)/Z. The claim that the even homotopy groups of

TC−`

(KU/m)/KU
˘

» TC−`

(ku/m)/ku
˘“

1
β

‰^

t

are given by q9Hdg(Z/m)/Zrβ±1s follows formally.

This finishes step (a) of our plan in 3.3. We’ll now commence step 3.3(b). We start with a
general fact (which is usually formulated as a spectral sequence).
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3.9. Lemma. — Let k be an even E1-ring spectrum and let M,N be even left-k-modules.
Then the mapping spectrum Homk(M,N) admits a complete exhaustive descending filtration
with graded pieces

gr˚ Homk(M,N) » Σ2˚ RHomπ2˚(k)

`

π2˚(M), π2˚(N)
˘

.

Here Σ2˚ : Gr(Sp) ! Gr(Sp) is the “double shearing” functor and RHomπ2˚(k) denotes the
derived internal Hom in graded π2˚(k)-modules.

Proof. In the usual adjunction colim: Fil(Sp)  ! Sp :const, the left adjoint is symmetric
monoidal and the right adjoint is lax symmetric monoidal. Furthermore, colim τ⩾2⋆(k) » k.
It follows formally that colim: LModτ⩾2⋆(k)(Fil(Sp)) 

! LModk(Sp) :const is an adjunction as
well and so Homk(M,N) » Homτ⩾2⋆(k)(τ⩾2⋆(M), constN). Hence we may define the desired
filration via

filnHomk(M,N) := Homτ⩾2⋆(k)

`

τ⩾2⋆(M), τ⩾2(⋆+n)(N)
˘

.

This filtration is clearly complete since we may pull 0 » limn!∞ τ⩾2(⋆+n)(N) out of the Hom. To
show that the filtration is exhaustive, we need to check that constN » colimn!−∞ τ⩾2(⋆+n)(N)
can similarly be pulled out of the Hom. To this end, recall that Fil(Sp) can be equipped with
the double Postnikov t-structure in which objects in the image of τ⩾2⋆(−) are connective and
connective objects are closed under tensor products (see rRak21, Construction 3.3.6s for example
and double everything). Then Modτ⩾2⋆(k)(Fil(Sp)) inherits a t-structure in which τ⩾2⋆(M) is
connective and the cofibres of τ⩾2(⋆+n)(N) ! constN get more and more coconnective as
n! −∞. This shows that the colimit can be pulled out.

It remains to determine the associated graded. By construction, the nth graded piece is
given by grnHomk(M,N) » Homτ⩾2⋆(k)(τ⩾2˚(M),Σ2(⋆+n)π2(⋆+n)(N)). To simplify this further,
let SGr and SFil denote the tensor units in graded and filtered spectra, respectively. By abuse
of notation, we identify SFil with its underlying graded spectrum. As remarked in (c), we
have Fil(Sp) » ModSFil

(Gr(Sp)); this identifies passing to the associated graded with the base
change functor − bSFil

SGr. Since the SFil-module structure on Σ2(⋆+n)π2(⋆+n)(N) already
factors through SFil ! SGr, we obtain

Homτ⩾2⋆(k)

`

τ⩾2˚(M),Σ2(⋆+n)π2(⋆+n)(N)
˘

» HomΣ2˚π2˚(k)

`

Σ2˚π2˚(M),Σ2(˚+n)π2(˚+n)(N)
˘

» Σ2nHomπ2˚(k)

`

π2˚(M), π2˚(N)(−n)
˘

.

The first step is the usual base change equivalence for τ⩾2⋆(k)! τ⩾2⋆(k)bSFil
SGr » Σ2˚π2˚(k),

the second step uses that the shearing functor Σ2˚ : Gr(Sp) ! Gr(Sp) is an E1-monoidal
equivalence (even E2-monoidal, see rDHL+23, Proposition 3.10s, but we don’t need that). Now
the right-hand side is precisely the nth graded piece of RHomπ2˚(k)(π2˚(M), π2˚(N)) and so
we’re done.

We’ll apply this now in the case k » kuhS
1 , so that π2˚(k) „= ZrβsJtK. We also let ExtiZrβsJtK

denote the graded ZrβsJtK-module H−iRHomZrβsJtK for all i ⩾ 0.

3.10. Corollary. — Let m ∈ N be a high-powered positive integer. Then the spectra
TC−((ku/m)/ku)_ and TC−((KU/m)/KU)_ are concentrated in odd degrees and we have

π−(2˚+1)TC
−`

(ku/m)/ku
˘_ „= Ext1ZrβsJtK

´

fil⋆q9Hdg q9d̂R(Z/m)/Z,ZrβsJtK
¯

π−(2˚+1)TC
−`

(KU/m)/KU
˘_ „= Ext1ZJq−1K

´

q9Hdg(Z/m)/Z,ZJq − 1K
¯

rβ±1s .
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Proof. According to Corollary 3.8 and Lemma 3.9, the spectrum TC−((ku/m)/ku)_ admits a
complete exhaustive filtration with associated graded Σ2˚(fil⋆q9Hdg q9d̂R(Z/m)/Z)

_, where now the
dual is taken in graded ZrβsJtK-modules. It’ll be enough to show that this dual is concentrated
in homological degree −1 (which precisely accounts for the Ext1ZJq−1Krβ±1s

-terms). Since ZrβsJtK
is (β, t)-complete as a graded object, the same is true for any dual in graded ZrβsJtK-modules,
and so it’ll be enough that

RHomZrβsJtK

´

fil⋆q9Hdg q9d̂R(Z/m)/Z,ZrβsJtK
¯

/(β, t) » RHomZ

´

gr˚
Hdg d̂R(Z/m)/Z,Z

¯

is concentraded in homological degree −1. Since grnHdg d̂R(Z/m)/Z » Σ−n∧n L(Z/m)/Z » Z/m,
the nth graded piece of the right-hand side is precisely RHomZ(Z/m,Z), which is indeed
concentrated in homological degree −1. This finishes the proof for TC−((ku/m)/ku)_.

The proof for TC−((KU/m)/KU)_ is analogous, except that we need a different argument to
show that the dual (q9Hdg(Z/m)/Z)

_ in ZJq−1K-modules is concentrated in homological degree −1.
By (q−1)-completeness, it’ll be enough to check the same for RHomZ(q9Hdg(Z/m)/Z/(q−1),Z).
By rWag25b, 3.8s we see that q9Hdg(Z/m)/Z/(q−1) admits an exhaustive ascending filtration with
associated graded given by gr˚

Hdg dR(Z/m)/Z. It follows that RHomZ(q9Hdg(Z/m)/Z/(q − 1),Z)
admits a descending filtration with associated graded RHomZ(gr

˚
Hdg dR(Z/m)/Z,Z). This is

indeed concentrated in homological degree −1 as we’ve seen above, so we’re done.

This finishes step (b) in our plan from 3.3. We continue with step (c). Note that neither
pro-idempotence of “lim”m∈N TC

−((ku/m)/ku) nor the fact that its transition maps become
eventually trace-class are automatically preserved under passing to homotopy groups. The
problem is that π˚(−)—or really passing to the associated graded of the Whitehead filtration
τ⩾⋆—is not a symmetric monoidal functor.

As we’ll see, in our situation, passing to the associated graded of the double-speed Whitehead
filtration τ⩾2⋆ behaves as if it were symmetric monoidal, which fixes all issues. Our starting
point is the following general fact, which is quite similar to Lemma 3.9 (and is also usually
formulated as a spectral sequence).

3.11. Lemma. — Let k be an even E∞-ring spectrum, let t ∈ π2˚(k) be a homogeneous
element, and let M , N be even k-modules. Then the t-completed tensor product M b̂kN admits
a complete exhaustive descending filtration with graded pieces

gr˚(M b̂k N) » Σ2˚
´

π2˚(M) b̂L
π2˚(k)

π2˚(N)
¯

.

Here − b̂L
π2˚(k)

− denotes the graded t-completed derived tensor product over π2˚(k).

Proof. The filtered spectrum τ⩾2⋆(M) bτ⩾2⋆(k) τ⩾2⋆(N) defines a filtration on M bk N . This
filtration is exhaustive, since colim: Fil(Sp)! Sp is symmetric monoidal, and complete, since
τ⩾2⋆(M) bτ⩾2⋆(k) τ⩾2⋆(N) is a connective object in the double Postnikov t-structure (see the
proof of Lemma 3.9).

Now consider the t-adically completed tensor product τ⩾2⋆(M) b̂τ⩾2⋆(k) τ⩾2⋆(N), where t
in the filtration degree corresponding to its homotopical degree. This now defines a filtration
on M b̂k N , which is clearly still complete. It is also still exhaustive. Indeed, for all n,
the cofibre of (τ⩾2⋆(M) bτ⩾2⋆(k) τ⩾2⋆(N))−n ! M b N is (2n + 1)-coconnective. Upon t-
adic completion, the coconnectivity can go down by at most 1, and so we see that the
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cofibre of (τ⩾2⋆(M) b̂τ⩾2⋆(k) τ⩾2⋆(N))−n !M b̂N will still be 2n-coconnective. This ensures
exhaustiveness.

Passing to the associated graded is symmetric and commutes with t-adic completion (in
the filtered and graded setting, respectively). Moreover, the double shearing functor Σ2˚ is
E1-monoidal (even E2, but we won’t need that). Hence

gr˚(M b̂k N) » Σ2˚π2˚(M) b̂Σ2˚π2˚(k) Σ
2˚π2˚(N) » Σ2˚

´

π2˚(M) b̂L
π2˚(k)

π2˚(N)
¯

.

3.12. Corollary. — “lim”m∈N fil
⋆
q9Hdg q9d̂R(Z/m)/Z and “lim”m∈N q9Hdg(Z/m)/Z are idempotent

pro-algebras, respectively, in the derived ∞-categories of t-complete graded ZrβsJtK-modules and
of (q − 1)-complete ZJq − 1K-modules.

Proof. Throughout the proof, b̂ will denote a t-completed tensor product. We also put
fil⋆ q9d̂Rm := fil⋆q9Hdg q9d̂R(Z/m)/Z and A := “lim”m∈N fil

⋆ q9d̂Rm for short.
Since each fil⋆ q9d̂Rm is a graded ZrβsJtK-algebra, we get a unit map ZrβsJtK ! A and a

multiplication A b̂L
ZrβsJtK A! A such that the composition

A » ZrβsJtK b̂L
ZrβsJtK A −! A b̂L

ZrβsJtK A −! A

is the identity. For the other composition, let m1,m2 ∈ N and consider the t-completed tensor
product

TC−`

(ku/m1 bku ku/m2)/ku
˘

» TC−`

(ku/m1)/ku
˘

b̂
kuhS

1 TC−`

(ku/m2)/ku
˘

.

By Lemma 3.11, this has a complete exhaustive filtration with graded pieces given by
Σ2˚(fil⋆ q9d̂Rm1 b̂L

ZrβsJtK fil
⋆ q9d̂Rm2). Observe that this graded completed tensor product is

concentrated in homological degrees r0, 1s. Indeed, this can be checked modulo (β, t). Then
fil⋆ q9d̂Rmi/(β, t) » gr˚

Hdg dR(Z/mi)/Zp
is given by Z/mi in every graded degree for i = 1, 2, and

Z/m1 bL
ZZ/m2 is indeed concentrated in homological degrees r0, 1s. It follows that the filtration

on TC−((ku/pm1 bku ku/p
m2)/ku) must be the double speed Whitehad filtration τ⩾2⋆.

By Corollary 2.30, TC−((ku/m3 bku ku/m)/ku) ! TC−((ku/m2 bku ku/m)/ku) factors
through the even spectrum TC−((ku/m)/ku). By passing to the associated graded of the
double speed Whitehead filtration, we see that

fil⋆ q9d̂Rm3 b̂L
ZrβsJtK fil

⋆ q9d̂Rm −! fil⋆ q9d̂Rm2 b̂L
ZrβsJtK fil

⋆ q9d̂Rm2

factors through fil⋆ q9d̂Rm. This finishes the proof that A = “lim”m∈N fil
⋆
q9Hdg q9d̂R(Z/m)/Z is an

idempotent pro-algebra.
The argument for “lim”m∈N q9Hdg(Z/m)/Z is analogous, except that we work with KU instead

of ku, and to show that q9Hdg(Z/m1)/Z b̂L
ZJq−1K q9Hdg(Z/m2)/Z is concentrated in homological

degrees r0, 1s, we need a slightly different argument: First, we can reduce modulo (q − 1). The
conjugate filtration from rWag25b, 3.8s gives an ascending filtration on q9Hdg(Z/mi)/Z/(q − 1)
for i = 1, 2, whose graded pieces are copies of Z/mi. Moreover, q9Hdg(Z/mi)/Z/(q − 1) is an
Z/mi-algebra, since q9Hdg(Z/mi)/Z contains an element of the form mi/(q−1). Thus, abstractly,
q9Hdg(Z/mi)/Z/(q − 1) »

À

N Z/mi. So we’re done since Z/m1 bL
Z Z/m2 is concentrated in

homological degrees r0, 1s.
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3.13. Corollary. — “lim”m∈N fil
⋆
q9Hdg q9d̂R(Z/m)/Z and “lim”m∈N q9Hdg(Z/m)/Z are equivalent

to pro-objects with trace-class transition maps.

Proof. Throughout the proof, b̂ will denote a t-completed tensor product. Using Corol-
lary 2.30 and unravelling the proof of Lemma 2.23, we find that that for every high-powered m,
TC−((ku/m3)/ku) ! TC−((ku/m)/ku) is trace-class in t-complete kuhS

1-modules. Hence it
must be induced by a map

η : kuhS
1
−! TC−`

(ku/m3)/ku
˘_

b̂
kuhS

1 TC−`

(ku/m)/ku
˘

By Lemma 3.11 (applied to the shift ΣTC−((ku/m3)/ku)_ to get an even spectrum, then we
shift back afterwards), the right-hand side has a complete exhaustive filtration with graded
pieces (fil⋆q9Hdg q9d̂R(Z/m3)/Z)

_ b̂L
ZrβsJtK fil

⋆
q9Hdg q9d̂R(Z/m)/Z. As in the proof of Corollary 3.12,

one easily checks that this graded completed tensor product is concentrated in homological
degrees r−1, 0s. It follows that the filtration must be given by τ⩾2⋆−1(−). Thus, by considering
τ⩾2⋆−1(η) and then passing to associated gradeds, we obtain a morphism

ZrβsJtK −!
`

fil⋆q9Hdg q9d̂R(Z/m3)/Z
˘_

b̂L
ZrβsJtK fil

⋆
q9Hdg q9d̂R(Z/m)/Z .

which witnesses that the morphism fil⋆q9Hdg q9d̂R(Z/m3)/Zp
! fil⋆q9Hdg q9d̂R(Z/m)/Z is indeed

trace-class, as desired.
The argument for q9Hdg(Z/m3)/Z ! q9Hdg(Z/m)/Z being trace-class is analogous, except

that we use KU instead of ku. Moreover, we need a different argument to show that
(q9Hdg(Z/m3)/Z)

_ b̂L
ZJq−1K q9Hdg(Z/m)/Z is concentrated in homological degrees r−1, 0s: First,

we can reduce modulo (q − 1). As we’ve seen in the proof of Corollary 3.12, on underlying
abelian groups we get an equivalence q9Hdg(Z/m)/Z/(q − 1) »

À

N Z/m. An analogous con-
clusion holds for q9Hdg(Z/m3)/Z/(q − 1). Thus, the tensor product modulo (q − 1) becomes
Σ−1

∏
N Z/m3 bL

Z
À

N Z/m, which is clearly concentrated in homological degrees r−1, 0s.

This finishes step 3.3(c) and we arrive at the result of our computation.

3.14. Theorem. — TC−,ref(ku b Q/ku) and TC−,ref(KU b Q/KU) are concentrated in even
degrees. Furthermore, their even homotopy groups are given as follows:
(a) π2˚ TC

−,ref(kubQ/ku) „= A˚
ku, where A˚

ku is obtained by killing the idempotent pro-graded
ZrβsJtK-algebra “lim”m∈N fil

⋆
q9Hdg q9d̂R(Z/m)/Z. In particular, there’s a short exact sequence

0 −! ZrβsJtK −! A˚
ku −! “colim”

m∈(N )op
Ext1ZrβsJtK

´

fil⋆q9Hdg q9d̂R(Z/m)/Z,ZrβsJtK
¯

−! 0 ,

and A˚
ku is an idempotent nuclear graded ZrβsJtK-algebra.

(b) π2˚ TC
−,ref(KU b Q/KU) „= AKUrβ±1s, where AKU is obtained by killing the idempotent

pro-ZJq − 1K-algebra “lim”m∈N q9Hdg(Z/m)/Z. In particular, there’s a short exact sequence

0 −! ZJq − 1K −! AKU −! “colim”
m∈(N )op

Ext1ZJq−1K

´

q9Hdg(Z/m)/Z,ZJq − 1K
¯

−! 0 ,

and AKU is an idempotent nuclear ZJq − 1K-algebra.
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Proof. We use the cofibre sequence of 3.3. To compute TC−,ref(ku b Q/ku), we must study
the cofibres of TC−((ku/m)/ku)_! kuhS

1 for high-powered integers m ∈ N . Put

fil⋆ q9dRm := cofib
´

ZrβsJtK! fil⋆q9Hdg q9d̂R(Z/m)/Z

¯

,

TC−
m := cofib

´

kuhS
1
! TC−`

(ku/m)/ku
˘

¯

.

Since kuhS
1 and TC−((ku/m)/ku) are even spectra, the sequence of double speed Whitehead

filtrations τ⩾2⋆(kuhS
1
) ! τ⩾2⋆TC

−((ku/m)/ku) ! τ⩾2⋆TC
−
m is still a cofibre sequence in

filtered spectra. Applying the construction from the proof of Lemma 3.9, we get complete
exhaustive filtrations on the duals of kuhS1 , TC−((ku/m)/ku), and TC−

m in such a way that
they fit into a cofibre sequence fil⋆(TC−

m)
_ ! fil⋆TC−((ku/m)/ku)_ ! fil⋆(kuhS

1
)_. After

passing to associated gradeds, we get a cofibre sequence of graded Σ2˚ZrβsJtK-modules

gr˚(TC−
m)

_ −! Σ2˚
`

fil⋆q9Hdg q9d̂R(Z/m)/Z
˘_
−! Σ2˚ZrβsJtK_ ,

where Σ2˚ : Gr(Sp) ! Gr(Sp) denotes the “double shearing” functor. It’s clear from the
construction that the morphism on the right must really be given by Σ2˚(−)_ applied to
the unit map ZrβsJtK ! fil⋆q9Hdg q9d̂R(Z/m)/Z. It follows that gr˚(TC−

m)
_ » Σ2˚(fil⋆ q9dRm)_.

Observe that (fil⋆ q9dR˚
m)

_ sits in homological degree −1. Indeed, this can be checked modulo
(β, t). Then fil⋆ q9dRm/(β, t) » cofib(Z! gr˚

Hdg dR(Z/m)/Z) is given by ΣZ in graded degree 0
and Z/m in every other graded degree, so it’s straightforward to see that its graded dual over
Z sits indeed in homological degree −1.

Thus, fil⋆(TC−
m)

_ must be the double speed Whitehead filtration, (TC−
m)

_ is concentrated in
odd degrees, and π2˚−1((TC

−
m)

_) „= H−1(fil
⋆(q9dRm)_) as a graded ZrβsJtK-modules. Combining

this with Corollary 3.10, we see that the long exact homotopy sequence of the rotated cofibre
sequence (kuhS

1
)_! Σ(TC−

m)
_! ΣTC−((ku/m)/ku)_ breaks up into a short exact sequence

of graded ZrβsJtK-modules of the following form:

0 −! ZrβsJtK −! H−1

`

fil⋆(q9dRm)
_

˘

−! Ext1ZrβsJtK

´

fil⋆q9Hdg q9d̂R(Z/m)/Z,ZrβsJtK
¯

−! 0 .

Since TC−,ref(kubQ/ku) » “colim”m∈(N )op Σ(TC
−
m) by the cofibre sequence from 3.3, it follows

at once that TC−,ref(ku b Q/ku) is concentrated in even degrees and that A˚
ku fits into the

desired short exact sequence. Furthermore, it’s clear from our considerations above that
`

fil⋆q9Hdg q9d̂R(Z/m)/Z
˘_

» Σ−1 ExtZrβsJtK

´

fil⋆q9Hdg q9d̂R(Z/m)/Z,ZrβsJtK
¯

−! ZrβsJtK ,

induced by the short exact sequence, is given by dualising the canonical unit morphism
ZrβsJtK ! fil⋆q9Hdg q9d̂R(Z/m)/Z. Then the underlying graded ind-ZrβsJtK-module of A˚

ku must
really be given by killing the pro-idempotent “lim”m∈N fil

⋆
q9Hdg q9d̂R(Z/m)/Z. Idempotence and

nuclearity of A˚
ku follow from Lemma 2.14(b) and Corollary 3.13. Since idempotents admit

a unique E∞-algebra structure, it follows that the desired description of A˚
ku also holds as a

nuclear ind-ZrβsJtK-algebra. This finishes the proof of (a).
The proof of (b) is analogous; the only difference is that we need a different argument why

cofib(ZJq−1K! q9Hdg(Z/m)/Z)
_ is concentrated in homological degree −1. This can be checked

modulo (q − 1). We’ve seen in the proof of Corollary 3.12 that q9Hdg(Z/m)/Z/(q − 1) is a Z/m-
algebra and, abstractly, q9Hdg(Z/m)/Z/(q−1) »

À

N Z/m. We can choose this decomposition in
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such a way that one of those summands corresponds to the unit Z/m! q9Hdg(Z/m)/Z/(q − 1).
It follows that

cofib
`

Z! q9Hdg(Z/m)/Z/(q − 1)
˘_

»

ˆ

ΣZ ‘
à

N∖t1u

Z/m
˙_

» Σ−1Z ‘ Σ−1
∏

N∖t1u

Z/m

is indeed concentrated in homological degree −1 and we’re done.

§3.2. Explicit q-Hodge filtrations

In this subsection, we’ll give an explicit description of the q-Hodge filtration fil⋆q9Hdg q9dR(Z/m)/Z.
This will be used in §4 to prove Theorems 1.10 and 1.11.

By construction, it will be enough to describe the q-Hodge filtration in the case where m = pα

is a prime power. In this case, the filtration is obtained via base change from q9dR(Zptxu∞/xα)/Zp
.

Using q9dR(Zptxu∞/xα)/Zp
» q9dR(Zptxu∞/xα)/Zptxu∞ and base change, we can further reduce

the problem to describing the filtration from rWag25b, Construction 4.21s on the derived q-de
Rham complex

q9dR(Zptxu/xα)/Zptxu » ZptxuJq − 1K
"

ϕ(xα)

rpsq

*^

(p,q−1)

.

Let us denote this ring by q9Dα for short and let Dα := dR(Zptxu/xα)/Zptxu. Then Dα is the
p-completed PD-envelope of (xα) ⊆ Zptxu and q9Dα/(q − 1) » Dα. The filtration fil⋆q9Hdg q9Dα

from rWag25b, Construction 4.21s is, by definition, given as the (1-categorical) preimage of the
(xα, q − 1)-adic filtration on Dαr1/ps

^

HdgJq − 1K.

3.15. Lifts of divided powers. — Let γ(−) := (−)p/p denote the divided power operation
and let γ(n)(−) denote its n-fold iteration. To get an explicit description of the filtration
fil⋆q9Hdg q9Dα, our goal is to find elements rγ

(n)
q (xα) ∈ filp

n

q9Hdg q9Dα for all n ⩾ 0 such that the
following two conditions hold:

(a) We have rγ
(n)
q (xα) ≡ γ(n)(xα) mod (q − 1).

(b) The image of rγ
(n)
q (xα) in Dαr1/ps

^

HdgJq − 1K is contained in the ideal (xα, q − 1)p
n.

Indeed, if we believe that fil⋆q9Hdg q9Dα/(q − 1) „= fil⋆HdgDα, then such elements must exist.
Conversely, if such elements exist, then fil⋆q9Hdg q9Dα/(q − 1) ! fil⋆HdgDα must be surjective
and thus an isomorphism by rWag25b, Lemma 4.26s. So fil⋆q9Hdg q9Dα must be generated as
a (p, q − 1)-complete filtered q9Dα-algebra by (q − 1) in filtration degree 1 and the elements
rγ
(n)
q (xα) in filtration degree pn for all n ⩾ 0.

The following technical lemma shows existence of these lifts along with some structural
information about them, and we’ll even see an explicit recursive construction in the proof.
Moreover, all of this works for all α ⩾ 2 without any restrictions in the case p = 2.

3.16. Lemma. — For all primes p, there is a sequence (Γn)n⩾0 of polynomials in Zptxurqs

with the following properties:

(a) Γn ≡ xp
n

mod (q − 1)p−1 and Γn ∈ (xp, (q − 1)p−1)p
n−1.

(b) Γn ∈ ((ϕi(x),Φpi(q))
p,Φpi(q)

p−1)p
n−1−i for all 1 ⩽ i ⩽ n− 1.

(c) Γn ∈ (ϕn(x),Φpn(q)).
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(d) (Γn)
α ∈

∏n
i=1Φpi(q)

pn−i · q9Dα for all α ⩾ 2.

In particular, for all α ⩾ 2, (Γn)α is contained in the ideal (xα, q − 1)p
n, and

rγ(n)q (xα) :=
(Γn)

α∏n
i=1Φpi(q)

pn−i ∈ filp
n

q9Hdg q9Dα

is a lift of the n-fold iterated divided power γ(n)(xα) and contained in the (pn)th step of the
q-Hodge filtration on q9Dα.

Proof. We’ll do a proof by induction. For the base case of the induction, n = 0, let Γ0 := x.
All of the statements are trivial in this case.

For the induction step, we first want to construct the element Γn. For this, let Pn, Qn be
some polynomials in Zrqs such that p = Pn(q)(q − 1)(p−1)pn−1

+Qn(q)Φpn(q). Note that such
polynomials always exist, since Φpn(1) = p and Φpn(q) ≡ (q − 1)(p−1)pn−1

mod p, so

Φpn(q)− (q − 1)(p−1)pn−1

p

is a unit modulo (q − 1)(p−1)pn−1 . Now define

Γn := (Γn−1)
p + Pn(q)(q − 1)(p−1)pn−1

δ(Γn−1) = ϕ(Γn−1)−Qn(q)Φpn(q)δ(Γn−1).

Statement (a) follows trivially. For (b) and (c), by Lemma 3.17 below it’s enough to check that
p · Γn is contained in these ideals. We have

p · Γn = p · (Γn−1)
p + Pn(q)(q − 1)(p−1)pn−1`

ϕ(Γn−1)− (Γn−1)
p
˘

= p · ϕ(Γn−1)−Qn(q)Φpn(q)
`

ϕ(Γn−1)− (Γn−1)
p
˘

.

Now (Γn−1)
p and ϕ(Γn−1) are contained in each one of the ideals from (b). Indeed, for (Γn−1)

p,
this follows from statements (b) and (c) of the induction hypothesis, and for ϕ(Γn−1) this
follows similarly from (a) and (b). Therefore, the first of the two equations above shows that
p · Γn is contained in each of the ideals from (b). Similarly, using statement (c) of the induction
hypothesis, we get ϕ(Γn−1) ∈ (ϕn(x),Φpn(q)) and so the second of the equations above shows
that p · Γn is contained in this ideal as well. This finishes the induction step for (b) and (c).

It remains to show statement (d). By rBS19, Lemma 16.10s, q9Dα is (p, q − 1)-completely
flat over ZpJq − 1K and thus flat on the nose over Zrqs. Therefore

n∏
i=1

Φpi(q)
pn−i · q9Dα =

n⋂
i=1

Φpi(q)
pn−i · q9Dα .

To show that (Γn)
α ∈ Φpi(q)

pn−i · q9Dα for 1 ⩽ i ⩽ n− 1, by the already proven statement (b),
it’s enough to show the same for any element in the ideal ((ϕi(x),Φpi(q))p,Φpi(q)p−1)αp

n−1−i .
So consider a monomial of the form

`

ϕi(x)jΦpi(q)
k
˘ℓ
Φpi(q)

(p−1)m ,

where j + k = p and ℓ+m = αpn−1−i. By construction, ϕ(x)α becomes divisible by Φp(q) in
q9Dα and so ϕi(x)α ∈ Φpi(q) · q9Dα. Hence ϕi(x)jℓ is divisible by Φpi(q)

⌊jℓ/α⌋. It will therefore
be enough to show ⌊

jℓ

α

⌋
+ kℓ+ (p− 1)m ⩾ pn−i .
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This is straightforward: For ℓ = 0, the inequality follows from α(p−1) ⩾ p as α ⩾ 2. In general,
if we replace (j, k) by (j−1, k+1), the left-hand side changes by at least ℓ−⌊ℓ/α⌋−1; for ℓ ⩾ 1
and α ⩾ 2 this term is always nonnegative. Therefore we may assume j = p, k = 0, and we must
show ⌊pℓ/α⌋+ (p− 1)m ⩾ pn−i. If p = 2 and α = 2, this becomes the equality ℓ+m = 2n−i

and so the inequality is sharp in this case. If p ⩾ 3 or α ⩾ 3, we have (p− 1)− ⌊p/α⌋ − 1 ⩾ 0
and so by the same argument as before we may assume ℓ = αpn−1−i, m = 0. The the desired
inequality follows from α(p− 1) ⩾ p again.

A similar but easier argument shows that every element in (ϕn(x),Φpn(q))
α becomes divisible

by Φpn(q) in q9Dα and we have an inclusion of ideals (xp, (q − 1)p−1)αp
n−1 ⊆ (xα, q − 1)p

n in
Zptxurqs. This finishes the proof of (d) and shows (Γn)

α ∈ (xα, q − 1)p
n . Hence rγ

(n)
q (xα) is

really contained in the (pn)th step of the q-Hodge filtration and it lifts γ(n)(xα) by (a).

3.17. Lemma. — If J ⊆ Zptxurqs is any of the ideals in Lemma 3.16(b) or (c), then
Zptxurqs/J is p-torsion free.

Proof. Consider the map ψi : Zptxurqs ! Zptxurqs given by the i-fold iterated Frobenius
ϕi : Zptxu! Zptxu and q 7! Φpi(q). If we replace ϕi(x) and Φpi(q) in the definition of J by x
and q, respectively, we obtain an ideal J0 ⊆ Zptxurqs such that

Zptxu/J „= Zptxu/J0 bZptxurqs,ψi
Zptxurqs .

Now ϕi is flat by rBS19, Lemma 2.11s and q 7! Φpi(q) is finite free, as the polynomial Φpi(q) is
monic. So ψi is flat and it suffices to show that Zptxurqs/J0 is p-torsion free. But Zptxurqs is a
free module over Zp with basis given by monomials in x, δ(x), δ2(x), . . . and q. By construction,
J0 is a free submodule on a subset of that basis. It follows that Zptxurqs/J0 is free over Zp,
hence p-torsion free.
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§4. Algebras of overconvergent functions
In this section we prove Theorems 1.10 and 1.11. In §§4.1–4.2 we’ll review Clausen’s and
Scholze’s approach to adic spaces via solid analytic rings rCS24, Lecture 10s and study algebras
of overconvergent functions as well as gradings in this setup. In §4.3, we’ll then combine this
with our explicit computation of the q-Hodge filtration on q9dR(Z/pα)/Zp

from §3.2 to finish the
proof of Theorems 1.10 and 1.11.

§4.1. Adic spaces as analytic stacks
In the following, we’ll use the formalism of analytic stacks from rCS24s. For the convenience of
the reader, let us briefly recall the relevant notions.

4.1. Solid condensed spectra. — Let Cond(Sp) denote the ∞-category of (light) condensed
spectra, that is, hypersheaves of spectra on the site of light profinite sets as defined by Clausen
and Scholze rCS24s. The evaluation at the point (−)(˚) : Cond(Sp)! Sp admits a fully faithful
symmetric monoidal left adjoint (−) : Sp! Cond(Sp), sending a spectrum X to the discrete
condensed spectrum X.

One can develop a theory of solid condensed spectra along the lines of rCS24, Lectures 5–6s.
Let Null := cofib(Srt∞us! SrN∪t∞us) be the free condensed spectrum on a null sequence. Let
σ : Null! Null be the endomorphism induced by the shift map (−) + 1: N ∪ t∞u! N ∪ t∞u.
Recall that a condensed spectrum M is called solid if

1− σ˚ : HomS(Null,M)
»
−! HomS(Null,M)

is an equivalence, where HomS denotes the internal Hom in Cond(Sp). We let Sp■ ⊆ Cond(Sp)
denote the full sub-∞-category of solid condensed spectra. Then Sp■ is closed under all
limits and colimits. This implies that the inclusion Sp■ ⊆ Cond(Sp) admits a left adjoint
(−)■ : Cond(Sp) ! Sp■. It satisfies (M b N)■ » (M■ b N)■, which allows us to endow Sp■
with a symmetric monoidal structure, called the solid tensor product, via M b■N := (M bN)■.
This allows us to define the derived ∞-category of solid abelian groups as D(Z■) := ModZ(Sp■).

4.2. Huber pairs à la Clausen–Scholze. — Recall that to any Huber pair (R,R+) one
can associate an analytic ring (R,R+)■ in the sense of rCS24, Lecture 1s as follows: First
consider R as a condensed ring via its given topology. For f ∈ R(˚) and M ∈ ModR(D(Z■))
we say that M is f -solid if

1− fσ˚ : RHomZ(NullZ,M)
»
−! RHomZ(NullZ,M)

is an equivalence. Here NullZ := Null b Z » cofib(Zrt∞us ! ZrN ∪ t∞us) denotes the free
condensed abelian group on a nullsequence. The inclusion of the full sub-∞-category of f -
solid R-modules admits a left adjoint (−)f■, called f-solidification. The underlying animated
condensed ring of (R,R+)■ is then defined as

(R,R+)▷■ := colim
tf1,...,fru⊆R+

Rf1■,...,fr■ ,

where the colimit is taken over all finite subsets of R+, and D((R,R+)■) ⊆ ModR(D(Z■)) is
the full sub-∞-category of solid condensed R-modules that are f -solid for all f ∈ R+ ⊆ R(˚).
In the following, we’ll always work with Huber pairs for which (R,R+)▷■ is just R itself.
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The classical notion of affinoid open subsets fits naturally into this formalism. Suppose
we’re given f1, . . . , fr ∈ R(˚) generating an open ideal as well as another element g ∈ R(˚),
so that U := tx ∈ Spa(R,R+) | |f1|x, . . . , |fr|x ⩽ |g|x ̸= 0u defines a rational open subset. We
can define an analytic ring O(U■) as follows: The underlying animated condensed ring is the
solidification

O(U) := R
“

1
g

‰(f1/g)■,...,(fr/g)■

and we let D(U■) := D(O(U■)) ⊆ ModRr1/gs(D((R,R+)■)) be the full sub-∞-category spanned
by those Rr1/gs-modules in D((R,R+)■) that are also (fi/g)-solid for i = 1, . . . , r. If O(U)
is static and quasi-separated, it agrees with the Huber ring from the classical theory of adic
spaces. In practice, this will almost always be the case.

4.3. Adic spaces à la Clausen–Scholze. — Clausen and Scholze associate to any Tate(4.1)

adic space X an analytic stack X■ ! AnSpecZ■. If X = Spa(R,R+) is Tate affinoid, we
simply put X■ := AnSpec(R,R+)■. If U ⊆ Spa(R,R+) is an open subset of a Tate affinoid
adic space, choose a cover V :=

∐
i∈I Vi ! U by rational open subsets and form the Čech nerve

V• := Č•(V ! X). Every Vn is a disjoint union of affinoid adic spaces, hence Vn,■ is already
defined. Then we can put U■ := colimrns∈∆∆op Vn,■. Finally, if X is an arbitrary Tate adic space,
choose a cover W :=

∐
j∈JWj ! X by affinoids and form the Čech nerve W• := Č•(W ! X).

Each Wm is a disjoint union of open subsets of Tate affinoid adic spaces, so Wm,■ is already
defined, and we put X■ := colimrms∈∆∆op Wm,■.

It can be shown that these constructions are well-defined and independent of the choices
involved. We’ll omit the verification, but let us at least mention the crucial input.

4.4. Lemma. — Let (R,R+) be a Huber pair and let X■ := AnSpec(R,R+)■ be the associated
affine analytic stack.
(a) If U,U ′ ⊆ Spa(R,R+) are rational open subsets, then

AnSpecO(U■)×AnSpec(R,R+)■ AnSpecO(U ′
■) » AnSpecO

`

(U ∩ U ′)■
˘

.

(b) If R is Tate and U ⊆ Spa(R,R+) is a rational open subset, then j : U■ ! X■ is an open
immersion of affine analytic stacks in the sense of rCS24, Lecture 16s. That is, j˚ admits
a fully faithful left adjoint j! satisfying the projection formula.

(c) If R is Tate and
∐n
i=1 Ui ! Spa(R,R+) is a cover by rational open subsets, then∐n

i=1 Ui,■ ! X■ is a !-cover of affine analytic stacks.

4.5. Remark. — The Tate condition in Lemma 4.4(b) and (c) is crucial and it is the reason
why we restrict to the Tate case when we describe adic spaces in terms of analytic stacks.
Without this assumption, (b) will be wrong. For example, if R is a discrete ring, any Zariski-open
also determines a rational open of Spa(R,R), but in this case j˚ almost never preserves limits,
so it can’t have a left adjoint j!.

Proof sketch of Lemma 4.4. Suppose U and U ′ are given by |f1|, . . . , |fr| ⩽ |g| ̸= 0 and
|f ′1|, . . . , |f ′s| ⩽ |g′| ≠ 0, respectively. Using the description of pushouts from rCS24, Lec-
ture 11s, it’s clear that O(U■) bL

(R,R+)■
O(U ′

■) is the solidification of Rr1/(gg′)s at the elements
fi/g and f ′j/g

′ for i = 1, . . . , r, j = 1, . . . , s. But that’s precisely O((U ∩ U ′)■), proving (a).
(4.1)To avoid confusion with analytic stacks, we’ll call an adic space Tate rather than analytic if, locally, there

exists a topologically nilpotent unit. The restriction to Tate adic spaces makes sure that open immersions go to
open immersions (see Lemma 4.4 below); analytic stacks can be associated to any adic space.
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For (b), assume U is given by |f1|, . . . , |fr| ⩽ |g| ̸= 0. Since R is assumed to be Tate,
the open ideal generated by f1, . . . , fr must be all of R. Hence g will aready be invertible in
RrT1, . . . , Trs/pgTi − fi | i = 1, . . . , rq and this quotient is automatically a derived quotient as
well. It follows that the functor j˚ : D(X■)! D(U■) can also be written as

(−)rT1, . . . , Trs
T1■,...,Tr■/pgTi − fi | i = 1, . . . , rq .

By rCS24, Lecture 7s, the functor (−)rT sT■ of adjoining a variable and then solidifiying it can
be explicitly described as RHomZ(Z((T−1))/ZrT s,−) and so j˚(−) » RHomR(Q,−), where

Q :=

ˆ r
â

i=1

Σ−1Z((T−1
i ))/ZrTis bL■

Z R

˙

/pgTi − fi | i = 1, . . . , rq .

It follows immediately that j˚ admits a left adjoint j!(−) » QbL
(R,R+)■

−. It remains to check
the projection formula

j!(M) bL
(R,R+)■

N » j!
`

M bL
O(U■)

j˚(N)
˘

.

By the same argument as above, Q is already an Rr1/gs-module and the functor j˚ is insensitive
to inverting g. Therefore, it’s enough to check the projection formula in the case where N
is an Rr1/gs-module. When restricting to Rr1/gs-modules, j˚ is just given by successively
killing the idempotent algebras Z((T−1

i )) bL■
ZrTis,Ti 7!fi/g

Rr1/gs for i = 1, . . . , r. Now for killing
an idempotent it’s completely formal to see that the left adjoint indeed satisfies the projection
formula. This finishes the proof of (b).

To show (c), since we already know that each ji : Ui,■ ! X■ is an open immersion, we can
use the criterion from rCS24, Lecture 18s to verify that

∐n
i=1 Ui,■ ! X■ is indeed a !-cover.

That is, if Ai := cofib(ji,!O(Ui)! R), we need to show A1 bL
(R,R+)■

· · ·bL
(R,R+)■

An » 0. Using
rHub94, Lemma 2.6s and an inductive argument as in rCS19, Lemma 10.3s, this can be reduced
to the special case where n = 2 and U1 = tx ∈ X | 1 ⩽ |f |xu, U2 = tx ∈ X | |f |x ⩽ 1u for some
f ∈ R. This is now a straightforward calculation.

4.6. Remark. — Let U ⊆ X be an open inclusion of Tate adic spaces and let j : U■ ! X■

be the corresponding map of analytic stacks. In the following, if its clear that we’re working
in D(X■), we often abuse notation and write OU instead of j˚OU■

for the pushforward of the
structure sheaf of U■. We also use − bL

OX■
OU■

to denote the functor j˚j
˚ : D(X■)! D(X■).

Let us point out that − bL
OX■

OU■
is not just the tensor product with OU in the symmetric

monoidal ∞-category D(X■). We can already see the difference if X = Spa(R,R+) and U ⊆ X
is a rational open given by |f1|, . . . , |fr| ⩽ |g| ≠ 0: In this case,

− bL
OX■

OU■
»

`

− bL
OX■

OU

˘(f1/g)■,...,(fr/g)■ .

In particular, even though OU bL
OX■

OU■
» OU (see Lemma 4.4(a) and Lemma 4.11(b) below),

it’s rarely true that OU is idempotent in D(X■).

Thus, there’s a priori no reason to expect that sheaves of overconvergent functions OZ†

would be idempotent. In the following, we’ll investigate why idempotence is satisfied in the
situation of Theorems 1.10 and 1.11. Let’s start by introducing a notion of open immersions
for analytic stacks that need not be affine.
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4.7. Open immersions of analytic stacks. — We call a map of analytic stacks j : U ! X
a naive open immersion if j is a !-able monomorphism and j˚ » j!. Since j is a monomorphism,
U ×X U » U . Combining this with proper base change, we get j˚j! » idD(U) and so j! is fully
faithful. Then the right adjoint j˚ of j˚ must be fully faithful as well.

Using the projection formula and j˚j! » idD(U), we see that j!OU ! OX exhibits j!OU as
an idempotent coalgebra in D(X). Then cofib(j!OU ! OX) must be an idempotent algebra. In
this way, we can associate to any naive open immersion an idempotent algebra in D(X), which
we call the complementary idempotent determined by U and denote OX∖U . It’s straightforward
to check that the forgetful functor i˚ : ModOX∖U

(D(X)) ! D(X), which is fully faithful by
idempotence, fits into a recollement

ModOX∖U

`

D(X)
˘

D(X) D(U)
i˚ j˚

i˚

i!

j!

j˚

and so j˚OU is obtained from OX by killing the idempotent algebra OX∖U . As long as it’s
clear that we’re working in D(X), we often abuse notation and just write OU instead of j˚OX .

4.8. Remark. — Every open immersion of affine analytic stacks in the sense of rCS24,
Lecture 16s is also a naive open immersion.

4.9. Remark. — If A ∈ D(X) is an idempotent algebra, we can define an analytic substack
UA ⊆ X by declaring that a map f : Y ! X factors through UA if and only if f˚ : D(X)! D(Y )
factors through the localisation D(X)/ModA(D(X)), or equivalently, if and only if f˚(A) » 0.
However, it’s not true that the constructions U 7! OX∖U and A 7! UA are inverses; it’s not
even clear why D(UA) would coincide with D(X)/ModA(D(X)).

It’s not obvious what conditions should be put on U and A to make these constructions
mutually inverse (moreover, whatever the condition, it should be satisfied for open immersions
of affine analytic stacks). This explains why we call the notion from 4.7 naive: An honest
open immersion of analytic stacks should be a naive open immersion for which the idempotent
algebra OX∖U meets the putative condition. In the following, we’ll work with the naive notion,
since it is enough for our purposes.

4.10. Lemma. — Let U ′ ! U ! X be naive open immersions of analytic stacks. Suppose
that U contains the closure of U ′ in the sense that there exists another naive open immersion
j : V ! X such that U ′ ×X V » ∅ and OX∖V bL

OX
OX∖U » 0. Then

OU bL
OX

OU ′ » OU ′ .

Moreover, the map OU ! OU ′ is trace-class in D(X) and factors through OX∖V .

Proof. The condition U ′ ×X V » ∅ implies that OU ′ is in the kernel of the pullback functor
j˚ : D(X) ! D(V ) and so OU ′ is an algebra over the idempotent A := OX∖V by 4.7. We
also know that OU is obtained from OX by killing the idempotent B := OX∖U . Hence
OU » cofib(B_! OX). Since B_ is a B-module, OU ′ is an A-module, and AbB » 0, we get
B_ bL

OX
OU ′ » 0, hence indeed OU bL

OX
OU ′ » OU ′ .

Since the double dual B__ is still a B-module, the same argument shows O_

U bL
OX

OU ′ » OU ′ .
Hence OU ! OU ′ is trace-class, with classifier given by the unit OX ! OU ′ . We’ve already
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seen that OU ′ is an A-algebra. The condition AbB » 0 also implies RHomX(B,A) » 0, since
RHomX(B,A) is both an A-module and a B-module. It follows that A is contained in the
image of j˚ : D(U)! D(X) and hence A is an OU -algebra. This shows that OU ! OU ′ factors
through A.

4.11. Lemma. — Let X be a Tate adic space with associated analytic stack X■ ! AnSpecZ■,
and let U,U ′ ⊆ X be open subsets.
(a) The map j : U■ ! X■ is a naive open immersion of analytic stacks. Moreover, an arbitary

map f : Y ! X■ of analytic stacks factors through U■ if and only if f˚(OX∖U ) » 0.
(b) We have U■ ×X■

U ′
■ » (U ∩ U ′)■. In particular, OU bL

OX■
OU ′

■
» OU∩U ′ and vice versa if

U and U ′ are exchanged.
(c) If U ′ ⊆ U , then U■ contains the closure of U ′

■ in the sense of Lemma 4.10.

Proof sketch. Let’s start with (b). In the case where U and U ′ are affinoid, U■×X■
U ′
■ » (U∩U ′)■

follows essentially by the construction of X■ in 4.3, because we can choose both U and U ′ to be
part of an affinoid cover of X (and to prove that said construction is independent of the choice
of cover, we need Lemma 4.4(a)). To show the general case, just cover U and U ′ by affinoid
open subsets.

Let’s show (a) next. Let’s first consider the case where X = Spa(R,R+) is affinoid and
U ⊆ X is a rational open. We’ve already seen in Lemma 4.4(b) that j : U■ ! X■ is a naive
open immersion. Suppose f : Y ! X■ is a map of analytic stacks such that f˚(OX∖U ) » 0. If
Y » AnSpecS is affine, then the map of analytic rings (R,R+)■ ! S factors through O(U■)
if and only if f˚ : D((R,R+)■) ! D(S) factors through D(U■). Since f˚(OX∖U ) » 0, this is
satisfied in our case. This proves the claim in the case where Y » AnSpecS is affine. In
particular, U■ ×X■

AnSpecS » AnSpecS. For the general case, write Y as a colimit of affines
to see U■ ×X■

Y » Y . Then f : Y ! X■ clearly factors through U■.
Now let U and X be arbitrary. Proving that j : U■ ! X■ is a naive open immersion formally

reduces to the special case considered above; we omit the argument. Now let f : Y ! X■

be a map of analytic stacks such that f˚(OX∖U ) » 0. Whether f factors through U■ can
be checked locally on X■. By (b), if Spa(R,R+) ! X is an affinoid open supset, then
U■×X■

AnSpec(R,R+)■ » (U ∩Spa(R,R+))■, so we can reduce to the case where X is affinoid.
As above, we may also assume that Y » AnSpecS is affine. Let

∐
i∈I Ui ! U be a cover by

rational open subsets. Then

OX∖U » colim
ti1,...,inu⊆I

´

OX∖Ui1
bL

OX■
· · · bL

OX■
OX∖Uin

¯

,

where the colimit is taken over all finite subsets of I. Since the colimit is filtered and f˚(OX∖U )
is detected by the single condition 1 = 0, there exists a finite subset ti1, . . . , inu ⊆ I such
that already f˚(OX∖Ui1

) bL
S · · · bL

S f
˚(OX∖Uin

) » 0 in D(S). By the criterion from rCS24,
Lecture 18s, it follows that

∐n
j=1 Uij ,■×X■

AnSpecS ! AnSpecS is a !-cover. We may therefore
replace S by the constituents of this cover, and for each of them it’s clear that they factor
through U■. This finishes the proof of (a).

Part (c) is a formal consequence: If V := X ∖ U ′, then V■ ! X■ is a naive open immersion
by (a), U■ ×X■

V■ » ∅ follows from (b), and if A := OX∖U bL
OX■

OX∖V , then it’s formal to
see that ModA(D(X■)) is the kernel of the pullback functor D(X■)! D(U■)×D((U∩V )■) D(V■).
But this functor is an equivalence as U ∪ V = X, and so A » 0.
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We can finally show the desired criterion for idempotence.

4.12. Definition. — IfX is a Tate adic space and Z ⊆ X is a closed subset, the overconvergent
neighbourhood of Z is the analytic stack

Z† := lim
U⊇Z

U■ ,

where the limit is taken over all open neighbourhoods of Z. If it’s clear that we’re working
in D(X■), we often abuse notation and denote by OZ† := colimU⊇Z OU ∈ D(X■) the sheaf of
overconvergent functions on Z. This is in favorable situations, but not always, the pushforward
of the structure sheaf of Z†; see Theorem 4.13(b) below.

4.13. Theorem. — Let X be a quasi-compact quasi-separated Tate adic space and let Z ⊆ X
be a closed subset such that for all points z ∈ Z and all generalisations z′ ⇝ z also z′ ∈ Z.
(a) The ind-object

“colim”
U⊇Z

OU ∈ IndD(X■)

is idempotent, nuclear, and obtained by killing the pro-idempotent “lim”Z∩W=∅OW , where
the limit is taken over all open subsets W ⊆ X such that Z ∩W = ∅. In particular,
OZ† ∈ D(X■) is idempotent and nuclear.

(b) If for every affinoid open j : Spa(R,R+) ! X the pullback j˚(OZ†) ∈ D((R,R+)■) is
connective(4.2), then pushforward along Z† ! X■ induces a symmetric monoidal equivalence
D(Z†) » ModO

Z† (D(X■)). In particular, in this case OZ† is really the pushforward of the
structure sheaf of Z†.

To prove Theorem 4.13, we send a lemma in advance.

4.14. Lemma. — Let X be a spectral space and let Y, Z ⊆ X be closed subsets such that
for z ∈ Z and y ∈ Y there never exists a common generalisation z ⇝x ⇝ y (in particular
Z ∩ Y = ∅). Then there exist open neighbourhoods U ⊇ Z and V ⊇ Y such that U ∩ V = ∅.

Proof. Fix z ∈ Z. By rStacks, Tag 0906s, y ∈ Y there exist open neighbourhoods Uy ∋ z and
Vy ∋ y such that Uy ∩ Vy = ∅. By compactness of Y , there exist finitely many y1, . . . , yn ∈ Y
such that Y ⊆ Vz := Vy1 ∪ · · · ∪ Vyn . Let also Uz := Uy1 ∩ · · ·Uyn , so that Uz ∩ Vz = ∅. By
compactness of Z, there exist finitely many z1, . . . , zm ∈ Z such that Z ⊆ U := Uz1 ∪ · · · ∪ Uzm .
Putting V := Vz1 ∩ · · · ∩ Vzm , we have constructed U and V with the required properties.

Proof of Theorem 4.13. First observe that Lemma 4.14 can be applied to any closed subset
Y ⊆ X such that Z ∩ Y = ∅. Indeed, for any common generalisation z ⇝x ⇝ y, we would
have x ∈ Z, as Z is closed under generalisations, but then y ∈ Z, as Z is also closed under
specialisations.

It follows that in the ind-object “colim”U⊇Z OU we can restrict to open neighbouhoods of
the form U = X ∖W for some open subset W such that Z ∩W = ∅. Indeed, for arbitrary U ,
apply Lemma 4.14 to Z and X ∖ U to get an open neighbourhood W ⊇ (X ∖ U) such that
Z ∩W = ∅. Then (X ∖W ) ⊆ U , as desired.

(4.2)Following discussions with Ben Antieau and Peter Scholze, we believe that connectivity can be replaced by the
much weaker condition that Modj˚(OZ† )(D(R)) is left-complete, using an adaptation of rMM24, Proposition 2.16s.
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Let OW := OX∖(X∖W ) ∈ D(X■) be the complementary idempotent determined by the open
subset X ∖W . Since each OU is obtained by killing the idempotent OX∖U , our observation
implies that “colim”U⊇Z OU is obtained by killing the pro-idempotent “lim”Z∩W=∅OW . For all
such W , applying Lemma 4.14 to Z and W provides another open neighbourhood W ′ ⊇ W
such that still Z ∩W ′ = ∅. By Lemma 4.10 and Lemma 4.11(c), OW ′ ! OW is trace-class and
factors through OW . It follows that “lim”Z∩W=∅OW » “lim”Z∩W=∅OW and that the condition of
Lemma 2.14 is satisfied, so that “colim”U⊇Z OU is indeed idempotent and nuclear in IndD(X■).
Since colim: IndD(X■) ! D(X■) preserves idempotents and nuclear objects, it follows that
OZ† ∈ D(X■) is idempotent and nuclear as well. This finishes the proof of (a).

For (b), note that Z† is clearly compatible with base change and so is OZ† by (a) and
Lemma 2.14(c). We may therefore assume that X = Spa(R,R+) is affinoid and OZ† is
connective. Then OZ† can be turned into an analytic ring using the induced analytic ring
structure from (R,R+)■. It follows that a map f : AnSpecS ! AnSpec(R,R+)■ factors through
OZ† if and only if S » f˚(OZ†). By Lemma 2.14(b), we have OZ† bL

(R,R+)■
OW » 0 for all

open W such that Z ∩W = ∅. Thus S » f˚(OZ†) implies f˚(OW ) » 0 for all such W . By
sandwiching open and closed subsets, we get f˚(OX∖U ) » 0 for all open neighbourhoods U ⊇ Z.
By Lemma 4.11(a), this implies that f factors through Z† » limU⊇Z U■.

Conversely, if f factors through Z†, then f˚(OX∖U ) » 0 for all U and thus f˚(OW ) » 0
for all W as above, using the same sandwiching argument. It follows that S is a module
over the nuclear idempotent ind-algebra obtained by killing “lim”Z∩W=∅ f

˚(OW ) in D(S). By
Lemma 2.14(c), this is “colim”U⊇Z f

˚(OU ). Then S is also a module over the honest colimit
colimU⊇Z f

˚(OU ) » f˚(OZ†), proving S » f˚(OZ†).
In conclusion, this argument shows that Z† » AnSpecOZ† is an affine analytic stack and so

D(Z†) » ModO
Z† (D((R,R+)■)) follows by construction, as we’ve put the induced analytic ring

structure on OZ† .

This implies idempotence and nuclearity in the situation of Theorem 1.10.

4.15. Corollary. — Let X := SpaZpJq − 1K ∖ tp = 0, q = 1u and let Z ⊆ X be the union of
the closed subsets Spa(Fp((q − 1)),FpJq − 1K) and Spa(Qp(ζpn),Zprζpns) for all n ⩾ 0.
(a) Z is closed and closed under generalisations.
(b) For n, r, s ⩾ 1 such that (p − 1)pn > s, let Wn,r,s ⊆ X be the rational open subset

determined by |pr| ⩽ |qpn − 1| ≠ 0, |(q − 1)s| ⩽ |p| ≠ 0. Then OZ† is idempotent, nuclear,
and the colimit of the idempotent nuclear ind-algebra obtained by killing the idempotent
pro-algebra “lim”n,r,sOWn,r,s.

Proof. Let x ∈ X ∖ Z. Then |p|x ̸= 0, hence |(q − 1)s|x ⩽ |p|x for s ≫ 0. Choose such an s.
Moreover, |qpn − 1|x ̸= 0 holds for all n ⩾ 0. Choose n such that (p − 1)pn > s and choose
r ≫ 0 such that |pr|x ⩽ |qpn − 1|x. Then x ∈Wn,r,s. If we can show Z ∩Wn,r,s = ∅, both (a)
and (b) will follow. Indeed, this will imply that X ∖ Z is open and closed under specialisations,
proving (a). Moreover, X∖Z =

⋃
n,r,sWn,r,s and so for any open subset W such that Z∩W = ∅

we must have Wn,r,s ⊇W for sufficiently large n, r, and s by quasi-compactness of W . Hence (b)
follows from Theorem 4.13(a).

To show Z∩Wn,r,s = ∅, let w ∈Wn,r,s. Since (p−1)pn > s, we get |(q−1)(p−1)pi−1 |w < |p|w
for all i > n and so |Φpi(q)|w = |p|w, where Φpi(q) denotes the (pi)th cyclotomic polynomial.
Thus 0 < |pr+i−n|w ⩽ |qpi − 1|w for i > n. In particular, w /∈ Z. Even better: If Ui denotes
the rational open subset determined by |qpi − 1| ⩽ |pr+i−n+1| ≠ 0 and V denotes the rational
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open subset determined by |p| ⩽ |(q − 1)s+1| ≠ 0, then the open set
⋃
i⩾n Ui ∪ V contains Z

and doesn’t intersect Wn,r,s, so indeed Z ∩Wn,r,s = ∅.

§4.2. Graded adic spaces
To deduce idempotence and nuclearity in the situation of Theorem 1.11, let us describe how to
encode gradings in terms of actions of the analytic stack

U(1)■ := AnSpecZru±1s■ ,

where Zru±1s■ is obtained from Zru±1s by solidifying both u and u−1. Equivalently, Zru±1s■ is
the analytic ring associated to the discrete Huber pair (Zru±1s,Zru±1s).
4.16. Graded adic spaces via U(1)■-actions. — Classically, the grading on Zrβ, ts in which
β and t receive degree 2 and −2, respectively, is encoded by an action of Gm := SpecZru±1s

on SpecZrβ, ts. The action map SpecZrβ, ts ×Gm ! SpecZrβ, ts corresponds to the ring map
∆: Zrβ, ts! Zrβ, ts bZ Zru±1s given by ∆(β) := u2β, ∆(t) := u−2t.

In our situation, we’re forced to work with the adic spectrum X˚ := SpaZrβ, ts^(p,t) instead.
But in the map ∆ we can’t just replace Zrβ, ts by its (p, t)-completion, since the tensor product
Zrβ, ts^(p,t) bZ Zru±1s won’t be (p, t)-complete anymore.

To fix this, consider π : U(1)■ ! AnSpecZ■ and let − bL
Z■

Zru±1s■ denote the pullback
π˚ : D(Z■) ! D(U(1)■). By rCS24, Lecture 7s, the process of adjoining a variable and then
solidifying it preserves limits, and so

Zrβ, ts^(p,t) bL
Z■

Zru±1s■ » Zrβ, t, u±1s
^

(p,t) .

Thus, if we put X˚
■ := AnSpec(Zrβ, ts^(p,t),Zrβ, ts^(p,t))■, we do get an action X˚

■ ×U(1)■ ! X˚
■

simply by (p, t)-completing the map ∆ above. Here and in the following, all products are taken
in the ∞-category AnStkZ■

of analytic stacks over Z■. We let U(1)•■ : ∆∆
op ! AnStkZ■

denote
the simplicial analytic stack corresponding to the underlying E1-structure of the E∞-group
object U(1)■, and we let X˚

■ × U(1)•■ : ∆∆
op ! AnStkZ■

denote the simplicial analytic stack
corresponding to the U(1)■-action on X˚

■. Finally, let

BU(1)■ := colim
rns∈∆∆op

U(1)n■ and X˚
■/U(1)■ := colim

rns∈∆∆op
X˚
■ ×U(1)n■ .

4.17. Graded objects as sheaves on BU(1)■. — Let Gm,Z■
:= Gm × AnSpecZ■. By

adapting the usual proof, it’s straightforward to show that

D(BGm,Z■
) » GrD(Z■)

is the ∞-category of graded solid condensed abelian groups. Since we have a map of analytic
stacks c : BU(1)■ ! BGm,Z■

, we get a pullback functor c˚ : GrD(Z■) ! D(BU(1)■). In this
way, we can associate to any graded solid condensed Z-module a quasi-coherent sheaf on BU(1)■.

In fact, it can be shown that c˚ defines a fully faithful embedding GrD(Z■)! D(BU(1)■).
We thank Peter Scholze for pointing out the following lemma (any errors are our own):
4.18. Lemma. — There exists an equivalence of ∞-categories

Mod∏
n∈Z ZD(Z■)

»
−! D

`

BU(1)■
˘

.

Under this equivalence, the image of a graded object M˚ ∈ GrD(Z■) is sent to
À

n∈ZMn, with
component-wise action of the ring

∏
n∈Z Z; or in other words, a comodule over Zru±1s is sent

to itself, regarded as a module over HomZ(Zru±1s,Z) „=
∏
n∈Z Z.
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4.19. Corollary. — The functor c˚ : GrD(Z■)! D(BU(1)■) is fully faithful.

Proof. It’s enough to show that the functor GrD(Z■)! Mod∏
n∈Z ZD(Z■) from Lemma 4.18

is fully faithful. This can be reduced to the case of shifts (both in graded and homotopical
direction) of the compact generator NullZ■

»
∏

N Z, i.e. the case of graded object of the form
ΣiNullZ■

(j) for some integers i and j, which is straightforward to check.

Proof sketch of Lemma 4.18. First observe that for any injective map α : rms ! rns in the
simplex category ∆∆, the associated map α : U(1)n■ ! U(1)m■ is !-able and the pullback functor
α˚ : D(U(1)m■ )! D(U(1)n■) agrees up to shift with α!. It follows that α˚ admits a left adjoint
α♮, which agrees up to shift with α!. The limit D(BU(1)■) » limrns∈∆∆ D(U(1)n■) can therefore
be rewritten as a simplicial colimit in PrL along the α♮ functors. The inclusion of D(Z■) into
the colimit defines a functor which we’ll denote η♮ : D(Z■) ! D(BU(1)■); its right adjoint is
given by pullback along the canonical map η : AnSpecZ■ ! BU(1)■.

This colimit diagram lies, in fact, in PrLω. Indeed, each D(U(1)n■) is compactly generated
and each α♮ preserves compact objects, since its right adjoint α˚ admits a further right adjoint
α˚. It follows that D(BU(1)■) is compactly generated, and the images of NullZ■

bL
Z■

OU(1)n■
for

all n form a set of compact generators. In fact, η♮NullZ■
is already a compact generator, since

each U(1)n■ ! BU(1)■ factors through η : AnSpecZ■ ! BU(1)■. Next observe that

η♮Z »
∏
n∈Z

O(n) and η♮NullZ■
»

∏
N

∏
n∈Z

O(n) ,

where O(n) ∈ D(BU(1)■) denotes the image of the graded Z-module Z(n). Indeed, to construct
a map, η♮Z !

∏
n∈ZO(n) it’s enough to provide a map Z ! η˚

`∏
n∈ZO(n)

˘

»
∏
n∈Z Z; we

take the diagonal map. To check that this induces an equivalence, we check that it becomes an
equivalence in each D(U(1)n■). This is a straightforward calculation, using the fact that the α♮
functors satisfy base change (which follows from proper base change, as they agree with α! up
to shift). In the same way one shows the formula for η♮NullZ■

.
Now η♮Z »

∏
n∈ZO(n) admits a

∏
n∈Z Z-module structure in an apparent way, hence it

induces a functor Mod∏
n∈Z

D(Z)! D(BU(1)■). Extending D(Z■)-linearly, we obtain a functor

Mod∏
n∈Z

D(Z■) »

´

Mod∏
n∈Z

D(Z)
¯

bD(Z) D(Z■) −! D
`

BU(1)■
˘

,

as desired. It is essentially surjective, since the compact generator
∏
n∈ZNullZ■

is mapped
to the compact generator η♮NullZ■

. To check fully faithfulness, we only need to verify that
Hom∏

n∈Z Z
`∏

n∈ZNullZ■
,
∏
n∈ZNullZ■

˘

! HomD(BU(1)■)(η♮NullZ■
, η♮NullZ■

) is an equivalence.
By adjunction, we may rewrite the right-hand side as HomD(Z)(NullZ■

, η˚η♮NullZ■
) and then

the claim is clear from η˚η♮NullZ■
»

∏
n∈ZNullZ■

.

In the next two lemmas, we’ll deduce that the graded ZprβsJtK-modules fil⋆q9Hdg q9d̂R(Z/pα)/Zp

can be regarded as sheaves on X˚
■/U(1)■ without loss of information.

4.20. Lemma. — Let us abusingly denote by OX˚/U(1)■ ∈ D(BU(1)■) the pushforward of
the structure sheaf of X˚

■/U(1)■. Then pushforward along X˚
■/U(1)■ ! BU(1)■ induces a

symmetric monoidal equivalence of ∞-categories

D
`

X˚
■/U(1)■

˘

» ModOX˚/U(1)■

`

D(BU(1)■)
˘

.
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Proof. The same argument as in 4.16 shows X˚
■ ×U(1)n■ » AnSpec(Zrβ, t, u±1

1 , . . . , u±1
n s

^

(p,t))■.
By definition,

D
`

BU(1)■
˘

» lim
rns∈∆∆

D
`

U(1)n■
˘

and D
`

X˚
■/U(1)■

˘

» lim
rns∈∆∆

D
`

X˚
■ ×U(1)n■

˘

,

where the cosimplicial limits are taken along the pullback functors. Observe that the pushforward
functors π˚ : D(X˚

■ ×U(1)n■)! D(U(1)n■) commute with these pullbacks. Indeed, if we would
take the limit along the !-pullbacks, this would follow from proper base change (by passing to
right adjoints). Since Z! Zru±1s is smooth of relative dimension 1 and the Kähler differential
module Ω1

Zru±1s/Z
„= Zru±1sdu is free of rank 1, we get π! » Σ−1π˚ by rCS19, Theorem 11.6s,

and so commutativity for the ˚-pullbacks follows.
Therefore OX˚/U(1)■ ∈ D(BU(1)■) is given by the degree-wise pushforwards of the structure

sheaves OX˚
■×U(1)n■

, that is, by Zrβ, t, u±1
1 , . . . , u±1

n s
^

(p,t) ∈ D(U(1)n■) for all rns ∈ ∆∆. In every
degree, the pushforward induces an equivalence

D
`

X˚
■ ×U(1)n■

˘ »
−! ModZrβ,t,u±1

1 ,...,u±1
n s

^

(p,t)

`

D(U(1)n■)
˘

.

Using this observation, DpX˚
■/U(1)■q » ModOX˚/U(1)■

(D(BU(1)■)) is completely formal.

4.21. Lemma. — Let ZprβsJtK ∈ GrD(Z■) denote the graded (p, t)-completion of the discrete
graded ring Zrβ, ts and equip ModZprβsJtK(GrD(Z■))^(p,t) with the (p, t)-completed graded solid
tensor product. Then c˚ induces a fully faithful lax symmetric monoidal functor

ModZprβsJtK
`

GrD(Z■)
˘^

(p,t)
−! ModOX˚/U(1)■

`

D(BU(1)■)
˘

,

which is symmetric monoidal when restricted to the full sub-∞-category spanned by those objects
in ModZprβsJtK(GrD(Z■))^(p,t) that are uniformly bounded below in every graded degree.(4.3)

Proof. To construct the desired functor, we compose c˚ with (p, t)-completion to obtain

ModZprβsJtK
`

GrD(Z■)
˘ c˚

−! Modc˚(ZprβsJtK)
`

D(BU(1)■)
˘

(−)^
(p,t)

−−−−−! ModOX˚/U(1)■

`

D(BU(1)■)
˘

.

The functor c˚ is symmetric monoidal and (−)^(p,t) is lax symmetric monoidal. Hence the
composition is lax symmetric monoidal. Moreover, it is symmetric monoidal when restricted to
graded ZprβsJtK-modules that are uniformly bounded below in every graded degree. Indeed, the
image of such objects in ModOX˚/U(1)■

(D(BU(1)■)) » limrns∈∆∆ D(X˚
■ ×U(1)n■) will be bounded

below and (p, t)-complete in every cosimplicial degree, because the pullback functors along
which the limit is taken preserve bounded below and (p, t)-complete objects (the latter because
they preserve limits; see the argument in 4.16). So we can reduce to the fact that the solid
tensor product in D(X˚

■ ×U(1)n■) preserves bounded below (p, t)-complete objects.
Clearly (−)^(p,t) ◦ c

˚ factors through ModZprβsJtK(GrD(Z■))^(p,t). The resulting functor

ModZprβsJtK(GrD(Z■))^(p,t) −! ModOX˚/U(1)■

`

D(BU(1)■)
˘

is symmetric monoidal on uniformly bounded below objects. Fully faithfulness can be checked
modulo (p, t), so it’ll be enough to check that ModFprβs(GrD(Z■))! Modc˚(Fprβs)(D(BU(1)■))
is fully faithful, which follows from Corollary 4.19.

(4.3)By contrast, the graded solid tensor product on GrD(Z■) does not preserve p-complete objects, not even if
they’re uniformly bounded below, because being p-complete is not preserved under infinite direct sums.
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§4.2. Graded adic spaces

4.22. Lemma. — Let X˚ ⊆ X˚ be the subset SpaZrβ, ts^(p,t) ∖ tp = 0, βt = 0u. Then X˚ is
a Tate adic space and its associated analytic stack X˚

■ can be written as the following pushout:

AnSpec
´

Zrβ, ts^(p,t)
“

1
pβt

‰

,Zrβ, ts^(p,t)

¯

■
AnSpec

´

Zrβ, ts^(p,t)
“

1
βt

‰

,Zrβ, ts^(p,t)

¯

■

AnSpec
´

Zrβ, ts^(p,t)
“

1
p

‰

,Zrβ, ts^(p,t)

¯

■
X˚
■

≓

Moreover, the U(1)■-action on X˚
■ restricts to an action on X˚

■ . Finally, if we abusingly
denote by OX˚/U(1)■ ∈ D(BU(1)■) the pushforward of the structure sheaf of X˚

■ /U(1)■, then
pushforward along X˚

■ /U(1)■ ! BU(1)■ induces a symmetric monoidal equivalence

D
`

X˚
■ /U(1)■

˘

» ModOX˚/U(1)■

`

D(BU(1)■)
˘

.

Proof. By 4.3, X˚
■ is glued together from rational open subsets of X˚. For example, one can

take U1 = tx ∈ X˚ | |βt|x ⩽ |p|x ̸= 0u and U2 = tx ∈ X˚ | |p|x ⩽ |βt|x ̸= 0u and then

X˚
■ » U1,■ ⊔(U1∩U2)■ U2,■ .

To show the desired pushout, it’s enough that Y1,■ := AnSpec(Zrβ, ts^(p,t)r1/ps,Zrβ, ts^(p,t))■ and
Y2,■ := AnSpec(Zrβ, ts^(p,t)r1/(βt)s,Zrβ, ts^(p,t))■ form a !-cover after pullback to U1,■ and U2,■.
This is clear, as Y1,■ ×X˚

■
U1,■ » U1,■ and similarly Y2,■ ×X˚

■
U2,■ » U2,■.

To see that the U(1)■-action on X˚
■ restricts to an action on X˚

■ , just observe that p and βt
are homogeneous elements. The pushout above implies that the pushforward OX˚ ∈ D(Z■) of
the structure sheaf of X˚

■ is given by

OX˚ » Zrβ, ts^(p,t)
“

1
p

‰

×
Zrβ,ts^

(p,t)

“

1
pβt

‰ Zrβ, ts^(p,t)
“

1
βt

‰

,

the pullback being taken in the derived sense. Now D(X˚
■ ×U(1)n■) » ModOX˚×U(1)n■

(D(U(1)n■))

holds for all rns ∈ ∆∆, since the same is true for Y1,■, Y2,■, and Y1,■×X˚
■
Y2,■. This finally implies

D(X˚
■ /U(1)■) » ModOX˚/U(1)■

(D(BU(1)■)), as desired.

We can finally show idempotence and nuclearity in the situation of Theorem 1.11.

4.23. Corollary. — Let Z˚ ⊆ X˚ be union of the closed subsets tp = 0u and trpnsku(t) = 0u

for all n ⩾ 0, where rpnsku(t) := ((1 + βt)p
n − 1)/β denotes the pn-series of the formal group

law of ku.
(a) Z˚ is closed and closed under generalisations. Moreover, the U(1)■-action on X˚

■ restricts
to an action on the overconvergent neighbourhood Z˚,† of Z˚.

(b) For n, r, s ⩾ 1 such that (p − 1)pn > s, let W ˚
n,r,s ⊆ X˚ be the rational open subset

determined by |pr| ⩽ |rpnsku(t)| ̸= 0, |(βt)s| ⩽ |p| ̸= 0. Then OZ˚,†/U(1)■ ∈ D(X˚
■ /U(1)■)

is idempotent, nuclear, and the colimit of the ind-algebra obtained by killing the idempotent
pro-algebra “lim”n,r,sOW˚

n,r,s/U(1)■.

Proof. The proof of Corollary 4.15 can be carried over to show that Z˚ ∩W ˚
n,r,s = ∅ and

X˚ ∖ Z˚ =
⋃
n,r,sW

˚
n,r,s. Hence Z˚ is closed and closed under generalisations. Moreover, the

U(1)■-equivariant open subsets X˚ ∖W ˚
n,r,s are coinitial among all open neighbourhoods of Z˚,
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because for an arbitrary U ⊇ Z˚, the complement X˚ ∖U is quasi-compact and thus contained
in some W ˚

n,r,s. Since the W ˚
n,r,s are U(1)■-equivariant, as they’re defined by homogeneous

elements, we see that Z˚,† acquires a U(1)■-action. This finishes the proof of (a).
For part (b), Theorem 4.13 shows that OZ˚,† is the colimit of the idempotent nuclear

ind-algebra obtained by killing “lim”n,r,sOW˚
n,r,s

. Since Z˚,† ×U(1)n■ » limU˚⊇Z˚(U˚
■ ×U(1)■),

where the limit is taken over all U(1)■-equivariant open neighbourhoods, and since killing
pro-idempotents is compatible with base change in the nuclear case by Lemma 2.14(c), we get
that OZ˚,†×U(1)n■

is similarly given by killing “lim”n,r,sOW˚
n,r,s×U(1)n■

in D(X˚
■ ×U(1)n■). Now let

A ∈ D(X˚
■ /U(1)■) be the colimit of the ind-algebra given by killing “lim”n,r,sOW˚

n,r,s/U(1)■ . Then
Lemma 4.10 shows that all sufficiently large transition maps in this pro-object are trace-class
again. Hence A is idempotent, nuclear, and the base change result from Lemma 2.14(c) shows
that the pullbacks of A to X˚

■ × U(1)n■ agree with OZ˚,†×U(1)n■
for all rns ∈ ∆∆. This implies

OZ˚,†/U(1)■ » A, as both of the maps

OZ˚,†/U(1)■ −! OZ˚,†/U(1)■ bL
O

X˚
■ /U(1)■

A − A

become equivalences after pullback to X˚
■ ×U(1)n■ for all rns ∈ ∆∆.

§4.3. Proof of Theorems 1.10 and 1.11

In this final subsection, we finish the proof of our main Theorems 1.10 and 1.11, thus providing
a completely explicit description of the homotopy groups of

TC−,ref`ku^
p b Q/ku^

p

˘

and TC−,ref`KU^
p b Q/KU^

p

˘

.

By Example 2.31 and Lemma 3.2, these objects are obtained from (ku^
p )
hS1 and (KU^

p )
hS1 ,

respectively, by killing the idempotent pro-algebras(4.4)

“lim”
α⩾2

TC−`

(ku/pα)/ku
˘

and “lim”
α⩾2

TC−`

(KU/pα)/KU
˘

.

The arguments from §3.1, particularly Corollaries 3.12, 3.13, and the proof of Theorem 3.14,
show that TC−,ref is concentrated in even degrees in both cases, and the even homotopy groups
are given by

π2˚ TC
−,ref`ku^

p b Q/ku^
p

˘

„= A˚
ku,p , π2˚ TC

−,ref`KU^
p b Q/KU^

p

˘

„= AKU,prβ
±1s ,

where A˚
ku,p is obtained by killing the idempotent pro-algebra “lim”α⩾2 fil

⋆
q9Hdg q9d̂R(Z/pα)/Zp

in graded (p, t)-complete ZprβsJtK-modules and AKU,p is obtained by killing the idempotent
pro-algebra “lim”α⩾2 q9Hdg(Z/pα)/Zp

in (p, q − 1)-complete ZpJq − 1K-modules. Moreover, we
already know that A˚

ku,p and AKU,p are idempotent nuclear ind-objects.
Our goal is to identify A˚

ku,p and AKU,p with the structure sheaves of the analytic stacks
Z˚,†/U(1)■ and Z†, respectively (see Corollaries 4.15 and 4.23). To this end, let us first discuss
how to transport A˚

ku,p and AKU,p into the solid condensed world.

(4.4)In the case p = 2, the pro-systems need to be indexed by α even and ⩾ 4, but we’ll ignore this since it
makes no difference
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4.24. Nuclear modules à la Efimov and à la Clausen–Scholze. — Let R be a ring
and I ⊆ R a finitely generated homogeneous ideal. Efimov defines an ∞-category of nuclear
R̂I-modules, which (along many equivalent characterisations) can be described as

Nuc(R̂I) » Nuc Ind
`

D̂I(R)
˘

;

see rEfi25, Corollary 4.4s (also recall that Nuc Ind(−) is set-theoretically ok thanks to Re-
mark 2.5). Let R̂I,■ := (R̂I , R̂I)■ be the analytic ring associated to the Huber pair (R̂I , R̂I)

(see 4.2). Then we can also consider the ∞-category Nuc(D(R̂I,■)) of nuclear R̂I,■-modules.(4.5)

Efimov rEfi25, Corollary 7.6s constructs a fully faithful strongly continuous symmetric monoidal
functor

NucD(R̂I,■) −! Nuc(R̂I) ,

which is an equivalence on bounded objects.

4.25. AKU,p and A˚
ku,p as sheaves on analytic stacks. — Applying Efimov’s result

above for R = Zrqs and I = (p, q − 1), we see that the bounded object AKU,p is in the
essential image of Nuc(D(ZpJq − 1K■)). Its preimage can be explicitly described: As We
can regard each q9Hdg(Z/pα)/Zp

as a (p, q − 1)-complete(4.6) solid condensed ZpJq − 1K-module
by (p, q − 1)-completing the associated discrete condensed abelian group. The pro-algebra
“lim”α⩾2 q9Hdg(Z/pα)/Zp

is still idempotent in ProD(ZpJq − 1K■) and has eventually trace-class
transition maps. Thus, by killing it, we get an idempotent nuclear algebra in IndD(ZpJq− 1K■).
Its colimit is the preimage of AKU,p.

In a similar way, via Lemma 4.21, we can regard “lim”α⩾2 fil
⋆
q9Hdg q9d̂R(Z/pα)/Zp

as an idem-
potent pro-algebra in ModOX˚

■ /U(1)■
(D(BU(1)■)). By killing it and taking the colimit of the result

idempotent nuclear ind-algebra, we can regard A˚
ku,p as an object in NucModOX˚

■ /U(1)■
(D(BU(1)■))

The following lemma shows that A˚
ku,p and AKU,p are already sheaves on X˚

■ /U(1)■ and X■,
where we put X˚ := X˚ ∖ tp = 0, βt = 0u and X := SpaZpJq − 1K ∖ tp = 0, q = 1u as before.

4.26. Lemma. — A˚
ku,p vanishes after (p, β)-completion and after (p, t)-completion. AKU,p

vanishes after (p, q− 1)-completion. In particular, A˚
ku,p and AKU,p are already contained in the

full sub-∞-categories D(X˚
■ /U(1)■) » ModOX˚/U(1)■

(D(BU(1)■)) and D(X■) » ModOX
(D(Z■)).

Proof. By Nakayama’s lemma it’s enough to show A˚
ku,p/(p, β) » 0 and A˚

ku,p/(p, t) » 0. Since
AKU,prβ

±1s is a A˚
ku,p-algebra, this will also show AKU,p/(p, q − 1) » 0. Since A˚

ku,p/t is
concentrated in nonnegative graded degrees, it is automatically β-complete, so it’s already
enough to show A˚

ku,p/(p, β) » 0. Now ku! ku/(p, β) » Fp is a map of E∞-ring spectra, and
it’s clear from Example 2.31 and Lemma 3.2 that TC−,ref(−bQ/−) satisfies base change along
E∞-maps. So TC−,ref(ku b Q/ku)/(p, β) » TC−,ref(Fp b Q/Fp) » 0.

It follows that (A˚
ku,p)

^

(p,βt) » 0. Using the pullback square from Lemma 4.22, we get

A˚
ku,p » A˚

ku,p bL
OX⋆

■/U(1)■
OX˚/U(1)■

and so A˚
ku,p is indeed a OX˚/U(1)■-module. The argument for AKU,p is analogous.

(4.5)In fact, for any Huber pair (R̂I , R
+) the nuclear objects Nuc(D((R̂I , R

+)■)) will be independent of the
choice of R+. See rAM24, Example 3.34s for example.

(4.6)Observe that q9Hdg(Z/pα)/Zp
is automatically p-complete, since it is (q−1)-complete and contains an element

of the form pα/(q − 1) by construction.
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§4. Algebras of overconvergent functions

To finish the proof of Theorems 1.10 and 1.11, we analyse the pro-systems “lim”n,r,sOWn,r,s

and “lim”n,r,sOW˚
n,r,s/U(1)■ from Corollaries 4.15 and 4.23 and show that they are pro-isomorphic

to the pro-systems from Theorem 3.14(b) and (a), respectively.

4.27. Lemma. — For every fixed α ⩾ 2 and all sufficiently large n, r, s, there exist maps

OW˚
n,r,s/U(1)■ −! fil⋆q9Hdg q9d̂R(Z/pα)/Zp

bL
O

X˚
■ /U(1)■

OX˚/U(1)■ ,

OWn,r,s −! q9Hdg(Z/pα)/Zp
bL

ZpJq−1K■ OX

in D(X˚
■ /U(1)■) and D(X■), respectively.

Proof. By construction, the q-de Rham complex q9dR(Z/pα)/Zp
contains elements of the form

ϕi(ϕ(pα)/Φp(q)) = pα/Φpi+1(q) for all i ⩾ 0, and we have pα ∈ fil1q9Hdg q9d̂R(Z/pα)/Zp
. When

we regard fil⋆q9Hdg q9d̂R(Z/pα)/Zp
as a graded ZprβsJtK-module, this precisely means that pα is

divisible by t. Hence we have elements of the form

p(n+1)α

rpnsku(t)
=
pα

t
· ϕ(p

α)

Φp(q)
· · · ϕ

n(pα)

Φpn(q)
∈ fil⋆q9Hdg q9d̂R(Z/pα)/Zp

for all n ⩾ 0. Similarly, there exist elements of the form (βt)N/p in fil⋆q9Hdg q9d̂R(Z/pα)/Zp

for sufficiently large N . Indeed, the ring q9dR(Z/pα)/Zp
is (p,Φp(q))-complete and contains an

element of the form pα/Φp(q). Applying the nilpotence criterion from rBCM20, Proposition 2.5s,
we see that Φp(q) is nilpotent in Fil˚q9Hdg q9d̂R(Z/pα)/Zp

/p. Then (q − 1)p−1 must be nilpotent
as well, and so (q − 1)N must be divisible by p in fil⋆q9Hdg q9d̂R(Z/pα)/Zp

for N ≫ 0.
In particular, as soon as we invert βt in fil⋆q9Hdg q9d̂R(Z/pα)/Zp

/p, we see that p will be
invertible as well, and so

fil⋆q9Hdg q9d̂R(Z/pα)/Zp
bL

O
X˚

■ /U(1)■
OX˚/U(1)■ » fil⋆q9Hdg q9d̂R(Z/pα)/Zp

“

1
p

‰

.

Moreover, as soon as p is invertible, rpnsku(t) will be invertible for all n ⩾ 0. Choosing s > N ,
we see that fil⋆q9Hdg q9d̂R(Z/pα)/Zp

contains an element of the form (βt)s/p which is topologically
nilpotent, hence automatically solid. Moreover, for (p− 1)pn > s and r > (n+ 1)α, we get an
element of the form pr/rpnsku(t), which is again topologically nilpotent and thus solid. Thus,
for such n, r, and s, a map OW˚

n,r,s/U(1)■ ! fil⋆q9Hdg q9d̂R(Z/pα)/Zp
r1/ps exists. The argument in

the q-Hodge case is analogous.

4.28. Remark. — As a consequence of rWag25b, Theorem 3.11s, q9Hdg(Z/pα)/Zp
/(qp

n − 1)

is an algebra over the p-typical Witt vectors Wpn(Z/pα). Since this ring is pα+n-torsion, we
already have elements of the form pα+n/(qp

n − 1) in q9Hdg(Z/pα)/Zp
for all n ⩾ 0.

4.29. Lemma. — For all fixed n, r, s such that (p− 1)pn > s and all sufficiently large α ⩾ 2,
there exist canonical maps

fil⋆q9Hdg q9d̂R(Z/pα)/Zp
bL

O
X˚

■ /U(1)■
OX˚/U(1)■ −! OW˚

n,r,s/U(1)■ ,

q9Hdg(Z/pα)/Zp
bL

ZpJq−1K■ OX −! OWn,r,s

in D(X˚
■ /U(1)■) and D(X■), respectively.
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Proof. Let q9Dα := q9dR(Zptxu/xα)/Zptxu as in §3.2 and let fil⋆q9Hdg q9D̂α denote its completed
q-Hodge filtration. It follows from 3.15 that fil⋆q9Hdg q9D̂α is generated as a (p, t)-complete
graded ZprβsJtK-algebra by lifts of the iterated divided powers γ(d)(xα) sitting in filtration
degree 2pd. Thanks to Lemma 3.16, we know that these lifts can be chosen to be of the form

(Γd)
α

tpd
∏d
i=1Φpi(q)

pd−i

for Γd ∈ (xp, (q − 1)p−1)p
d−1 . The extra tpd in the denominator accomodates for the fact that

this element must sit in degree 2pd. Note that the denominators all become invertible in
OW˚

n,r,s/U(1)■ , but that’s not enough to obtain the desired map: We must send the generators
to solid elements, to ensure that the map extends over the (p, t)-completion.

By construction, (q − 1)s/p and pr/rpnsku(t) are solid. In particular, pr/(tΦpi(q)) is solid
for all i = 1, . . . , n. For i > n, we have (p− 1)pi−1 > s by assumption. Hence (q− 1)(p−1)pi−1

/p
is topologically nilpotent in OW˚

n,r,s/U(1)■ . It follows that Φpi(q) = p(1 + w), where w is
topologically nilpotent, and so pr/Φpi(q) is solid in OW˚

n,r,s/U(1)■ for i > n. Therefore the
elements p2r/(tΦpi(q)) are solid for all i ⩾ 1.

By choosing α large enough, we can ensure that for every monomial xpi(q − 1)(p−1)j in the
ideal (xp, (q − 1)p−1)αp

d−1 we have pi ⩾ 2rpd or (p− 1)j ⩾ spd. Now (Γd)
α is a Zptxurqs-linear

combination of such terms. It follows that the δ-ring map Zptxu! Zp sending x 7! p can really
be extended to a map fil⋆q9Hdg q9D̂α ! OW˚

n,r,s/U(1)■ of graded solid condensed ZprβsJtK-algebras.
Via (p, t)-completed base change along Zptxu! Zp and extension of scalars to OX˚/U(1)■ , this
yields the desired map

fil⋆q9Hdg q9d̂R(Z/pα)/Zp
bL

O
X˚

■ /U(1)■
OX˚/U(1)■ −! OW˚

n,r,s/U(1)■

The argument in the q-Hodge case is analogous.

Proof of Theorems 1.10 and 1.11. By Lemma 4.26 and Lemma 2.14(c), we see that A˚
ku,p is

the colimit of the idempotent nuclear ind-algebra given by killing the pro-idempotent

“lim”
α⩾2

fil⋆q9Hdg q9d̂R(Z/pα)/Zp
bL

O
X˚

■ /U(1)■
OX˚/U(1)■

in D(X˚
■ /U(1)■). By Lemmas 4.27 and 4.29, we see that this pro-system is equivalent to

the pro-system “lim”n,r,sOW˚
n,r,s/U(1)■ , which proves A˚

ku,p » OZ˚,†/U(1)■ . The argument for
AKU,p » OZ† is completely analogous.

4.30. Remark. — An obvious adaptation of Theorem 3.14 shows that AKU,p and A˚
ku,p

are connective. Therefore the condition from Theorem 4.13(b) is satisfied and so OZ† and
OZ˚,†/U(1)■ are really the pushforwards of the respective structure sheaves.
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