g-Hodge complexes and refined TC™

Samuel Meyer and Ferdinand Wagner
February 5, 2026

Abstract. — As a consequence of Efimov’s proof of rigidity of the co-category
of localising motives [Efi-Rig], Efimov and Scholze have constructed refinements of
localising invariants such as THH and TC™. These refinements often contain vastly
more information than the original invariant.

In this article we explain a general recipe how to compute the refinements in
certain situations. We then apply this recipe to compute the homotopy groups of
TC™ ™ (ku ® Q/ku) and TC™'*(KU ® Q/KU). The result has a rather surprising
geometric description and contains non-trivial information modulo any prime, in
contrast to the unrefined TC™.
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§1. INTRODUCTION

§1. Introduction

Topological Hochschild homology (THH) and its variants TC™ and TP can be used to construct
powerful cohomology theories for p-adic formal schemes, such as prismatic cohomology [BMS19;
BS19]. However, in the setting of rigid-analytic varieties over Q,, or varieties over Q, they are
less useful: When evaluated on rational inputs, these invariants will be rational themselves,
and so any cohomology theory one might construct from them will never admit interesting
comparisons to, say, étale cohomology with torsion coefficients.

In this article we'll study a refinement of THH/TC™ due to Efimov and Scholze that allows
us to get around this shortcoming, while still being somewhat computable. We hope that this
will give rise to some interesting arithmetic cohomology theories.

§1.1. Refined localising invariants

The construction of refinements of THH and TC™ is based on Efimov’s rigidity theorem
(Theorem 1.2 below). The notion of rigidity for symmetric monoidal co-categories was introduced
by Gaitsgory and Rozenblyum (see [GR17, Definition 1.9.1.2]). We’ll work with the following
variant of their definition, which is equivalent to the original one by [Ram24, Corollary 4.57]:

1.1. Definition. — A presentable stable symmetric monoidal oo-category V) € is rigid if
the following two conditions are satisfied:
(a) The tensor unit 1 € £ is compact.

(b) & is generated under colimits by objects of the form X ~ colim(X; — Xy — ---), where
each X,, — X,11 is trace-class, that is, induced by a morphism 1 — X,\{H ® X, (see
Definition 2.3).

Generalising the construction of Mot'°® by Blumberg-Gepner-Tabuada [BGT16], Efimov
introduces a presentable stable symmetric monoidal oco-category MotlgOC of localising motives
over £ [Efi25, Definition 1.20] and shows the following deep result:

1.2. Theorem ([Efi-Rig]; see [KNP24, Theorem 4.7.1] for the case of Mot'*¢). — If £ is a
rigid presentable stable symmetric monoidal co-category, then the same is true for Motlgoc.

Efimov and Scholze observed that this theorem has the following curious consequence:

1.3. Refined localising invariants (Efimov—Scholze). — Let T be a localising invariant
over &£, that is, a colimit-preserving functor

T: Mot®® — D

into a presentable stable co-category D. If T is equipped with a symmetric monoidal structure,
then Theorem 1.2 implies that there’s a unique symmetric monoidal factorisation

Mot¢ —L— D

\ 1\
N
~
> ~
Tref ~ <

Drig

(1-DWe always assume that the tensor product commutes with colimits in both variables (see 1.15).
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This factorisation 77 : Mo‘c?C — D8 is the refinement of T defined by Efimov-Scholze. Here
D*g denotes the rigidification of D in the sense of [Ram24, Construction 4.75]; see also [Efi25,
Proposition 1.23]. We recall from these references that D' can be described as the full
sub-oo-category of Ind(D)(1'2) generated under colimits by ind-objects of the form “colim}_q z;,
where all transition maps z; — x; for rational numbers i < j are trace-class. If D is locally
rigid and its tensor unit is wj-compact, then it suffices to consider Z¢-indexed ind-objects
instead of Q-indexed ones. In other words, in this case

Dre =, NucInd(D)
is given by the nuclear objects in Ind(C) in the sense of Definition 2.3. See [Efi25, Theorem 4.2].

1.4. Remark. — The refinement procedure from 1.3 is very sensitive to the choice of £. This
is a feature, not a bug, as it offers a lot of flexibility, even if we stick to the case where T is
topological Hochschild homology. For example, we could consider the p-completed THH functor
. . loc BS1\A
THH(—; Zp) : Mot'*° — (Sp ),
to obtain a refinement THHref(—; Zp). But for a complete non-archimedean algebraically closed

field C, we could also define THHrfgc(—; Zp) to be the refinement of the functor

A

1
THH(—; Zp): Mot{, — Modrun(o,:z,) (S0,

(1.3)

where we only accept motives over O¢ as input. These two refinements are completely
loc

different, as the forgetful functor Mot5,, — Mot!°¢ doesn’t preserve trace-class morphisms.

The refinement 77 typically contains vastly more information than T itself, as we’ll discuss
in the case of THHref(Q) below. Our first goal in this article is to give a recipe for computing
Trf in certain cases.

1.5. Theorem (see Theorem 2.21). — Assume we’re in the situation of 1.3, with D locally
rigid. Let & — X be a strongly continuous symmetric monoidal functor into another rigid
symmetric monoidal presentable stable co-category, such that X is smooth and proper as an
E-module. Suppose we’re given the following data:

(V) A tower of Eq-algebras in X of the form Vo «— Vi «— Vo «— -+, such that each V, is
dualisable in X and contained in the thick tensor ideal generated by Vy. Moreover, for all
r 2 0, the induced map V41 @ V. — V. ® V. factors through the multiplication

Vi@V, 5V,

as a map of Vii1-Vy-bimodules.

Let U C X be the full sub-oo-category spanned by those U € X for which Hom (Vp,U) ~ 0.
Then there exists a cofibre sequence of the following form in NucInd(D):

“col>i5n” T(RMOdVT(X))V —T(X) — Tmf(u) .

(1-2) Applying Ind(—) to large oo-categories causes set-theoretical issues, but NucInd(—) is fine; see Remark 2.5.

(-3 Historically, THHTé o (=3Zp) is the first refined invariant. Efimov and Scholze have sketched a computation
of THH;%C (C;Zp) [Sch24a], by reducing the problem to the known computation of THH(O¢ /p®;Z,) for all
a > 1 (compare Theorem 1.5 below).
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With the language developed in §2.2, we could say that U is obtained from X by killing Vy and
T8 (U) is obtained from T(X) by killing the idempotent pro-algebra “lim,,, T(RMody, (X)).

1.6. How to apply Theorem 1.5. — Even though Theorem 1.5 looks quite technical, we’ll
verify in §2.5 that it covers many cases of interest. This is due to the following observation
(see Corollary 2.30): Let v: Z — 1y be a morphism from a dualisable object such that the
cofibre 1y /v admits a right-unital multiplication. Then Burklund’s tower of E;-algebras [Bur22,
Theorem 1.5]

:H.X/7)2 — ﬂx/v3<— :[]_X/U4 — e

satisfies the conditions from Theorem 1.5(V). Thus, to compute, for example, THH (S[1/p])
for a prime p, one can choose a Burklund-style tower of E;-structures on S/p® for sufficiently
large o to obtain a cofibre sequence

“colim” THH(S/p*)" — THH(S) — THH'™ (S[%]) )

In a similar way, we’ll explain how one could attempt computations such as THH™/(Q),
THH' (S[x]), or THHref(LfLS(p))—Which brings us to our main question:

§1.2. What’s THH™(Q)?

We’ll explain in §1.3 why the answer to this question should be interesting, but let us already
remark that it has to be non-trivial: As we’ll see below, THHref(Q);; # 0 for all primes p. So
in contrast to THH(Q) ~ Q, the refined version THH™ (Q) contains non-trivial p-complete
information for any prime p.

However, computing THH™ (Q), or just its p-completions, is a highly non-trivial task: As
we’ve seen above, this would involve computing THH(S/p®), or at least a pro-system of the
form “lim) THH(S/p®), which seems currently out of reach.

Scholze and Efimov have suggested that a more approachable goal would be to compute
THH™ (MU ®Q)/MU) and then to attack the original question—to the extent in which that’s
possible—via Adams-Novikov descent. Here we let THH™(—/k) denote the refinement of

THH(—/k): Mot — Mod,,(Sp)PS'

for any Eq-ring spectrum k.

While we still don’t know what happens for £ = MU, the purpose of this article is to give
an answer for k = ku and k = KU. To this end, we’ll introduce the following variant of THH™,
which will make it easier to formulate the result in geometric terms.

1.7. Refined TC~. — If k is complex orientable and t € 7_o(k™S 1) is a chosen complex
orientation, then taking S'-fixed points induces a symmetric monoidal equivalence

(=)"": Mody(Sp)™*" = Mod, 1 (Sp);
between k-modules with S'-action and t-complete ™5 -modules (see Lemma 3.2). In particular,

we can view TC™(—/k) as a symmetric monoidal functor Mot}¢ — Mod, ;51 (Sp);, which
contains the same information as THH(—/k). Applying refinement, we obtain the functor

TC " (= /k): Mot — Nuc(k"S")
of by Efimov and Scholze. Here Nuc(k"") := Nuc Ind(Mod, ;51 (Sp); ) denotes Efimov’s oo-

category of nuclear k"' modules.


https://arxiv.org/pdf/2203.14787.pdf#nul.1.5
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So it will be enough to compute TC™™ (ku ® Q/ku) and TC™" (KU ® Q/KU).

1.8. g-Hodge filtrations and g-Hodge complexes. — Suppose we’ve chosen an [E;-
structure on S/m for some integer m. Then [Wag25a, Theorems 4.27 and 5.63] show that

T2 TC™ (ku ® S/m) /ku) = fily 4, ¢-dR(z/m)/z »
T34 TC™ (KU ®S/m) /KU) = q-Hdg gy 2[6+']

where ¢-dR_ /7 denotes the derived g-de Rham complex, ﬁl;_Hdg is a g-Hodge filtration in the
sense of [Wag25b, Definition 3.2] (which in the case of Z/m just amounts to a g-deformation
of the Hodge filtration, as the additional compatibilities are trivial), and q—Hdg(Z /m)/z. 18 the
associated q-Hodge complex
. (g—1) (g-1) A
g-Hdg z/pn) 7 = colim (ﬁlg,Hdg G-AR (/) /2~ 1L 1, G-AR (/) 2.~ - '>(q_1) .

Thanks to Burklund’s result [Bur22, Theorem 1.5], we can choose a coinitial sub-poset N {CN
of positive integers, partially ordered by divisibility, together with compatible E;-structures on
S/m for m € N¥. This leads to the following result:

1.9. Theorem (see Theorem 3.14). — TC™™((ku ® Q)/ku) and TC™™ (KU ® Q)/KU)

are concentrated in even degrees, and their even homotopy groups are described as follows:

(a) w2 TCT™ ((ku ® Q)/ku) = A} , where A}, is the idempotent nuclear graded Z[J3][t]-
algebra obtained by killing the pro-idempotent “hm;;zeNé Fil;Hdg q-dRz/m)/z-

(b) T2 TCT™ (KU ® Q)/KU) = Agy[B*Y], where Axy is the idempotent nuclear Z[q — 1]-
algebra obtained by killing the pro-idempotent “limq’q’qué q-Hdg(z/m)/z-

Theorem 1.9 provides a description of the desired homotopy rings in terms of the ¢-Hodge
filtrations on ¢-dR(z/m)/z.- In §3.2, we’ll describe ﬁl;_Hdg q-dR(z/m)/z in terms of explicit
generators. This leads to a much more explicit description of Aj and Aky in terms of
rings of overconvergent functions on certain adic spaces. For simplicity, we’ll work with
TC™™ ((ku) ® Q)/ku}) and TC™" (KU} ® Q)/KU,) instead. Let us first formulate the
result for KUQ, as it is easier to state. We put

Agu,p = m TC™™ ((KU) @ Q)/KUp) ,

so T2, TCT™ ((KUp ® Q)/KUp) = Aku,p[B*']. Let also X :=SpaZy[q — 1]\ {p =0,q =1}
be the “analytic locus” where p or ¢ — 1 is invertible. Then Akt ;, has the following description,
confirming a conjecture of Scholze and Efimov.

1.10. Theorem. — Let Z C X denote the union of the closed subsets Spa(F,(¢—1)), Fplg—1])
and Spa(Qy(Cpn), Zp[Cpn]) for alln > 0. Let Z1 denote the overconvergent neighbourhood of Z
in X and O(Z1) the nuclear Zy[q — 1]-algebra of overconvergent functions on Z. Then

Axu, = 0(Z1).

In Fig. 1 we show a picture of Z!. It should be reminiscent of Scholze’s famous prismatic pic-
ture (a nice depiction of which can be found in [HN20, p. 4]), but the rays are “overconvergently
blurred” and the “origin” {p = 0,¢ = 1} has been removed.
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Figure 1: The analytic spectrum of Axy , = O(Z1).

Since Z' visibly contains the entire infinitesimal neighbourhood of {p = 0} except for
the “origin”, we see that TCf’ref((KUg ® Q)/KUp), # 0. In particular, it follows that
THH™(Q), # 0, as we've claimed above.

To formulate a similar geometric result for kuy, consider the ungraded ring VAERIN

it with
its (p,t)-adic topology. We wish to encode the graded (p,t)-complete ring Z,[5][t] (11;1 )terms
of an action of G,, on SpaZ[ﬁ,t]?p’ pyy a8 usual-—but we have to be careful: Since we wish
that t is a topologically nilpotent elements in non-zero graded degree, we can only act by
units u “of norm |u| = 1”. More precisely, we have to replace G,, by the “adic unit circle”
U(L)a := Spa(Z[u*1], Z[u*1]).
With this modification, everything works (as we’ll elaborate in §4.2): Declaring £ and t to
have degree 2 and —2, respectively, determines an action of U(1)g on SpaZ|[z, t](An " and we can

identify Z,[5][t] with the structure sheaf on (SpaZ[3, t] (Ap t)) /U(1)a, where the quotient is always

taken in the derived (or “stacky”) sense. We also let X* := Spa Z[ﬁ,t]?p H {p=0,pt =0}
Since p and [t are homogeneous, X* inherits an action of U(1)e. Putting

Aj,, =T TCT (k) @ Q) /kuy)

we see that Aﬁu,p

on (SpaZ[p, t](Ap t)) /U(1)a. As we'll see, it is already the pushforward of a sheaf on the open

substack X*/U(1)a. This sheaf, which we'll also denote Ay, , can be described as follows:

is a graded Z,[8][t]-module, hence we can regard it as a quasi-coherent sheaf

1.11. Theorem. — Let Z* C X* be union of the U(1)a-equivariant closed subsets {p = 0}
and {[p"]ku(t) = 0} for alln > 0, where [p™]xu(t) = ((1+ Bt)P" —1)/B denotes the p"-series
of the formal group law of ku. Let Z*T denote the overconvergent neighbourhood of Z*. Then
Z*1 inherits a U(1)g-action and

Afup = Ozt ju(1)a -
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§1.3. New cohomology theories for Q-varieties

Let us end with a bit of speculation. It should be possible to adapt the formalism of even
filtrations from [HRW22] to TC~"f(—/ku) and TC~**{(—/KU). For a smooth variety X over
Q, this would allow us to construct cohomology theories RI'k,(X) and RI'ky(X); the former
comes naturally equipped with a filtration:

A1* RT e (X) = grl, 0 TCT™ ((ku® X) /ku)
RIky(X) = grd, pg1 TCT™ (KU ® X)/KU) .

This article can be viewed as a computation of the coefficients of fil* RI'y,(—) and RI'xy(—).

1.12. Relation to g-de Rham/g-Hodge cohomology. — Morally, fil* RT'\,(X) should
be the “g-Hodge-filtered ¢g-de Rham cohomology of X” and RI'ky(X) should be the “g-Hodge
cohomology of X

We remark that there’s a naive definition of g-de Rham cohomology of Q-varieties (obtained,
for example, by applying [Wag25b, Theorem A.1] for A = Q), but it would just be a (¢ — 1)-
completed base change of ordinary de Rham cohomology. By contrast, RI',(X) and RI'ky(X)
will be non-trivial modulo any prime p, and so they ought to be much more interesting. In
particular, we hope to find not only comparison isomorphisms with de Rham cohomology, but
also with étale cohomology of Xg with torsion coefficients.

1.13. Relation to Habiro cohomology. — We expect that R['ky(—) naturally descends
from Z[q — 1] to the Habiro ring H = lim,ey Z[Q]E\qm—l)' In particular, its ring of coefficients

Aky should admit a Habiro descent Aky satisfying Axy = Aky ®%, Z[q — 1].

This descent should arise as follows: We explain in [Wag25a, §5] how descent to the Habiro
ring corresponds to making the S'-action on THH(—/ku) genuine with respect to all finite
subgroups C,, C S'; or more precisely, it corresponds to turning THH(— /ku) into a cyclonic
spectrum. One could then apply the refinement procedure to the functor

THH(—/KU): Motig{, — CycnSp

valued in cyclonic spectra. Via an appropriate cyclonic even filtration, it should then be possible
to to construct the desired Habiro descent RI'y(X) of RI'ky(X). Moreover, we hope that
RI'%(X) admits a stacky approach, given by an appropriate cyclonic version of the even stack
of [DHRY], and we expect that the resulting Habiro stack X is closely related to Scholze’s
construction [Sch25].

1.14. Higher chromatic bases. — We would be very interested in the calculation for MU
or any higher chromatic base like BP(n) or E,,, and we’re curious to see whether the deformed
de Rham complexes from [DM23] make an appearance. The final goal should be to work
directly with the refinement of

THH(-): Mot'*® — CyctSp,

valued in cyclotomic spectra, and to describe the cyclotomic even stack of THHref(X ) when X
is a Q-variety. The result might be close to the finest possible information that one can squeeze
out of THH(—).

Here we should point out that THHref(@) is an Ey.-algebra over the K-theory spectrum
K(Q), which vanishes upon K (n)-localisation for n > 2. Due to the delicate nature of the
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refinement, this doesn’t mean that the answer over a higher chromatic base would be trivial,
and TC(—/MU) should still contain strictly more information than TC™**f(—/ku), but
that information will necessarily be rather subtle.!4)

§1.4. Overview of this article

In §2, we study refined localising invariants in general. After a few generalities in §§2.1-2.3,
we’ll explain a method to compute refinements in §2.4. We’ll then show in §2.5 that Burklund’s
[E1-structures satisfy the necessary assumptions for the method to be applicable.

In §3, we’ll then apply the method to compute the homotopy groups of TC™ " ((ku®Q) /ku)
and TC™((KU ® Q)/KU). We'll first derive a preliminary description in terms of certain
g-Hodge filtrations ﬁl;,Hdg q-dR(z/m)/z in §3.1. Afterwards, we’ll construct explicit generators
of these filtrations in §3.2. This will finally allow us to prove the explicit descriptions of
Theorems 1.10 and 1.11 in §4.

1.15. Notation and conventions. — Throughout the article, we freely use the language of
oo-categories and we’ll adopt the following conventions:

(a) Stable oco-categories. We let Sp denote the oco-category of spectra. For an ordinary
ring R, we let D(R) denote the derived oco-category of R. We often implicitly regard
objects of D(R) as spectra via the Eilenberg-MacLane functor H, but we’ll always suppress
this functor in our notation. For a stable oco-category C, we let Hom¢g(—, —) denote the
mapping spectra in C. The shift functor and its inverse will always be denoted by > and
¥~! (even for D(R)), to avoid confusion with shifts in graded or filtered objects.

(b) Symmetric monoidal oco-categories. If no confusion can occur, we denote the tensor
unit by 1 and the tensor product by ®. If C is symmetric monoidal, we let Alg(C) and
CAlg(C) denote the co-categories of Eqj-algebras and E.-algebras in C, respectively.

Whenever we consider a symmetric monoidal co-category C which is stable or pre-
sentable, we always implicitly assume that the tensor product commutes with finite colimits
or arbitrary colimits, respectively. In the presentable case, we let Hom,(—, —) denote the
internal Hom in C and XV := Hom,(X, 1) the dual of an object X € C.

(¢) Graded and filtered objects. For a stable co-category C, we let Gr(C) and Fil(Sp)
denote the co-categories of graded and (descendingly) filtered objects in C. The shift in
graded or filtered objects will be denoted (—)(1). An object with a descending filtration is
typically denoted

flF X = (---<—ﬁ1”X<—ﬁl”+1X<—--->

and we let gr* X denote the associated graded, given by gr™ X = cofib(il"*! X — fil" X).
We mostly work with filtrations that are constant in degrees < 0 (such as the Hodge
filtration). In this case we’ll abusingly write fil* X = (fil° X « fil! X « ...); this should
be interpreted as the constant fil° X-valued filtration in degrees < 0.

If C is symmetric monoidal and the tensor product — ® — commutes with colimits
in both variables, we equip Gr(C) and Fil(C) with their canonical symmetric monoidal
structures given by Day convolution. We'll use the fact that Fil(C) ~ Mody, s Gr(C),

(-9 Here’s one way to think about this: TC™"*f(ku ® Q/ku) should see the algebraic locus where “v; # 0. In
the world of adic spaces this corresponds to the condition “|vi| > 17 We expect that TC ™" (MU @ Q/MU) is
able to see a certain part the locus where “0 < |v1| < 17



(9)
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where 1, denotes the tensor unit in Gr(C) and ¢ sits in graded degree —1; see e.g. [Rak21,
Proposition 3.2.9]. Under this equivalence, passing to the associated graded corresponds
to “modding out 7, i.e. the base change 1gr ®y, [ —

Sometimes we also consider ascending filtrations. Ascendingly filtered objects will be
denoted fil, X = (--- — fil, X — fil,11 X — ---) and the associated graded by gr, X,
where gr,, X := cofib(il" ! X — fil" X).

Condensed mathematics. Whenever we use condensed mathematics, we work in the
light condensed setting. We’ll distinguish between the words static (“un-animated”) for
a spectrum concentrated in degree 0, and discrete (“un-condensed”) for a condensed
spectrum with the discrete topology.

Derived quotients. For an E;-ring spectrum R, a homotopy class f € m,(R), and a left-
or right- R-module M, we denote

M/ f = cofib(f: ¥"M — M).

For several homotopy classes fi,..., fr, we let M/(fi,..., fr) = (- (M/f1)/fa )/ [fr
Similarly, if R* is a graded E;-ring spectrum, f € m,(R?), and M* is a left or right-R-
module, we put

M*/f = cofib(f: "M (i) — M)

and define M*/(f1,..., fr) analogously. The same notation will also be used in the filtered
setting, by regarding filtered objects as graded 1g,[t]-modules, as explained above.

Completions. For an E.-ring spectrum R, finitely many homogeneous homotopy classes
fis.oy fr € m(R), and and an R-module spectrum M, we let

M(f17~“’f7”) = ?]:Lig M/(fi”‘? ey f71:L)

denote the (fi,..., fr)-adic completion of M. Since the completion only depends on the
ideal I = (fi,..., f) C mx(R), we often just write M (or (=)7 for longer arguments). If
R is an ordinary ring, this recovers the notion of derived I-completion; in particular, all
completions in this article will be derived. For the p-completions of Z and the sphere
spectrum S we omit the hat and just write Z, and S,,.

We let Modg(Sp); € Modg(Sp), or D;(R) € D(R) for ordinary rings R, denote the
full sub-co-category spanned by the I-complete objects, that is, those M for which M ~ M T
The following fact will be used countless times: If M is (fi,..., fr)-complete, and the
homotopy groups of M/(fi,..., fr) vanish in some degree d, then also the homotopy
groups of M must vanish in degree d. Completion can analogously be defined in the
graded or filtered setting, and then an analogue of this fact will still be true.

Derived (g-)de Rham complexes. We let dRp /4 and ¢-dRg/4 denote the derived de
Rham complex and the derived g-de Rham complex of R over A, respectively (the latter
is only defined if A is a A-ring).

1.16. Acknowledgments. — We are grateful to Peter Scholze and Sasha Efimov for
proposing this question and explaining many technical points of the theory. Moreover, it was
Scholze who pointed out that the filtration on ¢-dRz/pe)/z,, that we found in the homotopy
groups of TC™ ((ku/p®)/ku), should indeed be canonical, despite the second author’s initial
conviction that this couldn’t possibly be true—this observation is what led the second author
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to revisit the theory of ¢-Hodge filtrations/complexes in [Wag25b; Wag25a]. Special thanks
are also due to Sanath Devalapurkar and Arpon Raksit for generously sharing and explaining
their (by then) unpublished results on the connection between ¢g-de Rham cohomology and ku.
Furthermore, would like to thank Gabriel Angelini-Knoll, Johannes Anschiitz, Ben Antieau, Ko
Aoki, Guido Bosco, Robert Burklund, Jeremy Hahn, Lars Hesselholt, Deven Manam, Florian
Riedel, and Juan Esteban Rodriguez Camargo for helpful discussions.

This work was carried out while F.W. was a Ph.D. student at the University/Max Planck
Institute for Mathematics in Bonn and he would like to thank these institutions for their
hospitality. F.W. was supported by DFG through Peter Scholze’s Leibniz-Preis.

10



§2. REFINED LOCALISING INVARIANTS AND HOW TO COMPUTE THEM

§2. Refined localising invariants and how to compute them

In this section we’ll present Efimov—Scholze’s construction of refined localising invariants and
we’ll explain a method for computing them in the case of certain “open submotives” of “smooth
and proper” rigid symmetric monoidal co-categories over some base (these notions will be made
precise below). As a consequence, we’ll get a recipe for computing THH™ (Q), which we’ll
carry out (after base change to ku) in §§3-4, but the method would apply just as well to other
cases like THH™ (LS, /S(,)) or THH™ (S[z]).

§2.1. Trace-class morphisms and nuclear objects

In this subsection we briefly review the two notions in the title. These will be used countless
times in the rest of the article. Throughout, we let C be a presentable symmetric monoidal
oo-category; by convention (see 1.15), this includes the assumption that the tensor product
commutes with colimits in both variables.

2.1. Definition. — A morphism ¢: X — Y in C is called trace-class if there exists morphism
n: 1 — XY®Y in C such that ¢ is the composition

evy QY
—_—

X~XQ12%, xoX'®Y 1QY ~ Y.

We often call n the classifier of ¢ and say that n witnesses ¢ being trace-class.

Trace-class morphism have a number of nice properties. We’ll often use the properties from
[CS22, Lemma 8.2] as well as the following lemma.

2.2. Lemma. — Let F':C — D be a symmetric monoidal functor between presentable

symmetric monoidal co-categories. By abuse of notation, we use (—)¥ to denote both the predual
in C and in D.

(a) There exists a natural transformation F((—)Y) = F(—)V.

(b) If X =Y is trace-class in C, then YV — XV is trace-class in C and F(X) — F(Y) is
trace-class in D.

(¢) The commutative square in D formed by the morphisms from (a) and (b)

F(YY) —— F(XY)

El
-
-
-
-
-
-
-

FY)" —— F(X)Y

admits a canonical diagonal map F(Y)¥ — F(XV) that makes both triangles commute.

Proof. The natural transformation from (a) is adjoint to F'((—)") ®p F(—) = 1p, which is in
turn given by applying F to the evaluation (—) ® (—) = Lc.

Now let X — Y be trace-class in C with classifier 1¢ — XY ® Y. If we apply F to the
classifier and compose with the morphism F(XV) — F(X)" from (a), we obtain a morphism
Ip - F(XY)®p F(Y) — F(X)¥®p F(Y), which witnesses F'(X) — F(Y) being trace-class.
If we compose instead with Y — YV, we obtain 1¢ — XV ®cY — XV ®cY"V, which witnesses

11
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YY — XV being trace-class. This shows (b). To show (c¢), we construct the diagonal map
F(Y)" — F(XVY) as follows:

FY) - FX'®Y)®p F(Y)' ~F(XV)®p F(Y)®p F(Y)" — F(XV).
Here we use the classifier ¢ — XV ®¢ Y and the evaluation map for F'(Y). O

2.3. Definition. — In addition to the assumptions above, let us now assume that C is stable,
compactly generated, and the tensor unit 1 is compact.

(a) An object X € C is called nuclear if every morphism P — X from a compact object P is
trace-class.

(b) We call X basic nuclear if it can be written as X ~ colim(Xy — X; — ---) such that
each transition map X, — X, is trace-class.

We let Nuc(C) C C denote the full sub-oo-category spanned by the nuclear objects.

2.4. Theorem. — Let C be a presentable stable symmetric monoidal co-category such that C
1s compactly generated and the tensor unit 1 € C is compact.

(a) Nuc(C) is stable and closed under colimits and tensor products in C.

(b) Nuc(C) is wi-compactly generated and the wi-compact objects are precisely the basic
nuclears.

(¢) If F:C — D is a symmetric monoidal colimit-preserving functor into another presentable
symmetric monoidal co-category, then F restricts to a functor F': Nuc(C) — Nuc(D).

Proof. Parts (a) and (b) are [CS22, Theorem 8.6]. By Lemma 2.2(b), F' preserves trace-class
maps, hence basic nuclear objects and thus all nuclear objects by (b). This proves (c). O

2.5. Remark. — If C is a small stable symmetric monoidal co-category, then Theorem 2.4
can be applied to Ind(C). Since every trace-class map in Ind(C) factors through a compact
object by [CS22, Lemma 8.4], we see that the basic nuclear objects in Ind(C) are of the form
“colim”(X; — X9 — -+ ), where each X,, — X,,4+1 is trace-class in C.

If C is a presentable stable symmetric monoidal co-category, one can still make sense of
NucInd(C) without running into set-theoretic problems. Indeed, if k is a sufficiently large
regular cardinal such that C is k-compactly generated and 1 is k-compact, then every trace-class
morphism in C factors through a k-compact object. Thus every basic nuclear ind-object is
equivalent to one in which each X,, is k-compact and so the basic nuclear objects in form an
essentially small co-category. We may then define NucInd(C) as Ind,,, (—) of the co-category
of basic nuclear objects.

§2.2. Killing (pro-)algebra objects

In this subsection we review the general formalism for passing to the “open complement” of
an algebra object. We'll follow [CS24, Lecture 13]. Throughout, let’s fix a presentable stable
symmetric monoidal co-category C.

2.6. Killing algebras. — Let A € C be an object equipped maps u: AQ A — Aand 1 — A
such that yu is left-unital (or right-unital; this doesn’t matter). We let C4 C C be the full
sub-oo-category spanned by those U € C for which

Hom,(A,U) ~0,
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where Hom, denotes the internal Hom of C (see 1.15), Clearly C* is closed under limits in C. If
k is a sufficiently large cardinal such that S ® A are k-compact for all S in a set of generators
for C, then C# is also closed under x-filtered colimits. By the co-categorical reflection theorem
[RS22], it follows that the inclusion C* — C admits a left adjoint j*: C — C4. Since C4 is also
clearly closed under Hom, (Y, —) for any Y € C, we see that

FXRY) = (*(X)®Y)

is an equivalence for all XY € C. By abstract nonsense about symmetric monoidal localisations
(see [L-HA, Proposition 2.2.1.9]), it follows that C* and j*: C — C*4 can be equipped with
canonical symmetric monoidal structures and the inclusion C4 — C with a lax symmetric
monoidal structure. In particular, j*(1) is an Eq-algebra in C. We’ll often say that C4 is
obtained from C by killing A and j*(1) is obtained from 1 by killing A.

Our first goal is now to give a formula for j* in certain cases.

2.7. Lemma. — Let T := fib(1 — A). Then for every X € C the canonical map
nx: X ~ Hom;(1,X) — Hom,(Z, X)
becomes an equivalence upon applying Home(—,U) for any U € C4.

Proof. 1It’s enough to show Home (fib(nx),U) ~ 0. Note that the fibre fib(nx) ~ Hom,(A, X)
is a weak A-module in the sense that there exists a unital multiplication map

A®Hom,(A, X) — Hom.(A4, X).

In particular, Hom/(A, X) is a retract of A ® Hom,(A, X) and so it suffices to show that
Home¢(—, U) vanishes on the latter. Now Hom¢(A®Y,U) ~ Home(Y, Hom.(A,U)) ~ 0 holds
for all Y € C, so we conclude. O

2.8. Proposition. — With notation as above, suppose that one of the following two conditions
1s satisfied:
(a) For all X € C, we recursively put Xo == X and X, +1 = Hom.(Z, X,,). Then the diagram

nx nx
XX L X, —2 .

stabilises at some finite stage (for example, this is satisfied if A is idempotent—then the
colimit always stabilises after the first step).

(b) The functor Homy(A, —) commutes with sequential colimits (for example, this is satisfied
if A is dualisable in C).

Then j*(X) is the colimit of the diagram from (a) for all X € C.

Proof. Let us denote the colimit of the diagram from (a) by Xo. Then Lemma 2.7 ensures
that Home (X oo, U) — Home (X, U) is an equivalence for all U € C4, so we only need to check
Xoo € C4; that is, Home (A, Xoo) =~ 0. Equivalently, nx..: Xoo — Hom,(Z, Xoo) needs to be an
equivalence. But either of the two assumptions above makes sure that Hom,(Z, —) commutes
with the colimit defining X, and so nx,., is an equivalence by construction. O

We'll now explain a variant of the construction above in a pro-/ind-setting.
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2.9. Killing pro-algebras — We keep C a presentable symmetric monoidal stable oo-
category. The tensor product on C extends to symmetric monoidal structures on Pro(C) and
Ind(C).>Y Observe that Hom, can also be extended to a functor

Ind(Hom,)
-

Pro(C)°? ® Ind(C) ~ Ind(C?) ® Ind(C) Ind(C),

which, by abuse of notation, we still denote Hom,. Explicitly,

Homc(“lim” Y. “colim” Z ) ~ “colim” Hom.(Y;, Zx).
jes 7 ek P (j,k)EJoP X K (Y, Zk)

Let now A = “lim_; A; € Pro(C) be a pro-object equipped with maps p: A® A — A and

1 — A such that p is left-unital. We let Ind(C)* C Ind(C) denote the full sub-co-category
spanned by those ind-objects for which

Hom,(A, M) ~0.

Our goal is again to describe a left adjoint j*: Ind(C)? — Ind(C) of the inclusion. To this end,
let Z := fib(1 — A) and consider the canonical maps nx: X ~ Hom,(1, X) — Hom.(Z, X) for
all X € Ind(C), as in Lemma 2.7.

2.10. Lemma. — The inclusion of Ind(C)4 admits a left adjoint j*: Ind(C) — Ind(C)4,
which can be explicitly described as follows: For X € C we recursively put Xg = X and
Xnt1 :=Hom,(Z, X,,). Then

74 (X) zcolim(X ax, oy, My, ey )

Proof. Since Hom(A, —): Ind(C) — Ind(C) preserves filtered colimits, we can argue as in the
proof of Proposition 2.8 to see that j*(X) € Ind(C)4. It remains to show that the canonical
morphism X — j*(X) induces equivalences

Homlnd(C) (]* (X)7 U) = Homlnd(C) (Xa U)

for all U € Ind(C)A. It will be enough to show the same for nx, or equivalently, that
Hompyg(cy(Home (A, X),U) ~ 0. To this end, let M € Ind(C) be any object for which the

natural transformation Homg(A, —) = Home (1, —) ~ (—) admits a section.(*?) Via such a
section M — Hom (A, M), the identity on Homp,q.c)(M,U) factors through

HomInd(C) (MC(Aa M)a @C(/L U)) ~0,
and so Homy,q(cy(M, U) =~ 0. Since such a section exists for M = Hom, (A, X), we conclude. [J

2.11. Killing idempotent pro-algebras. — Suppose that A is idempotent in Pro(C), that
is, 1 — A induces an equivalence

A~1QA S AQA.

(2-DWe’ll ignore the set-theoretic difficulties that arise with applying Pro(—) and Ind(—) to large co-categories.
In all cases of interest, we can safely replace C by its k-compact objects C* C C for some large enough regular
cardinal x (usually kK = w1 is enough).

(22 Intuitively, the condition should be that M admits a unital multiplication A ® M — M, but this doesn’t
make sense in our setting. So we replace this by the condition that Hom, (A, M) — M admits a section.
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Let us spell out how j5*(1) looks like in this case: We write A = “lim” 4; and denote by
(—)Y := Hom,(—, 1) the predual in C. Then Lemma 2.10 implies that there is a cofibre sequence

«“ 2 v -3k

32111551 Al — 1 —j5%(1).
For idempotent A, we check in Lemma 2.12 below that j*: Ind(C) — Ind(C)“ can be equipped
with a symmetric monoidal structure (we don’t know if this works in general—the argument
from 2.6 doesn’t seem to work anymore). As a consequence, j*(1) will be an E-algebra in
Ind(C). We'll say that j*(1) is obtained from 1 by killing the idempotent pro-algebra A.

2.12. Lemma. — Suppose that A is an idempotent pro-object. Then for all X,Y € Ind(C),
the canonical morphism
FX®Y) — " ("(X)®Y)

is an equivalence. In particular, there’s a canonical way to equip j*: Ind(C) — Ind(C)4 with a
symmetric monoidal structure.

Proof. By Lemma 2.10 and idempotence of A, j*(X) ~ cofib(Hom(A4, X) — X). Thus, to
show the first assertion, we may equivalently show that the canonical morphism

Hom, (A, Home (A4, X)®Y) — Home (4, X)®Y

induced by 1 — A is an equivalence. To see this, first observe that this morphism has a left
inverse given by

Hom, (A, X)® Y ~ Hom, (A, Hom(A, X)) ® Y — Hom, (A, Hom: (A4, X)QY)

using idempotence of A and Y ~ Hom,(1,Y). Now, in general, let M € Ind(C) be an ind-
object for which Hom,(A, M) — M has a left inverse. We can then exhibit Hom,(A, M) — M
as a retract of Hom,(A, Hom,(A, M)) — Hom,(A, M). But the latter is an equivalence by
pro-idempotence of A, so already Hom,(A, M) — M must be an equivalence.

This finishes the proof that j*(X ® Y) — j*(5%(X) ® Y) is an equivalence. By abstract
nonsense about symmetric monoidal structures on localisations (see [L-HA, Proposition 2.2.1.9]),
it follows that j* can be canonically equipped with a symmetric monoidal structure. ]

2.13. Remark. — In general, j*(1) is not an idempotent E,-algebra in Ind(C); it is
idempotent if and only if AY := “colim}_ o, A is an ind-idempotent coalgebra in the sense that
AY — 1 induces an equivalence AY ® AY ~ AV in Ind(C).

In the following lemma we’ll study a special situation in which this is the case.

2.14. Lemma. — Let A = “lim]_; A; be an idempotent pro-object whose transition maps
are eventually trace-class in the sense that for all i € I there exists an object j — i such that
Aj — A is trace-class. Let AY = “colimj_; A]. Then the canonical map

X ®AY = Home(A, X)

is an equivalence for all X € Ind(C). In particular, this implies:

(a) AY is an idempotent coalgebra in Ind(C) with eventually trace-class transition maps.
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(b)  j*(1) is an idempotent nuclear Eq-algebra in Ind(C), Ind(C)* C Ind(C) is precisely the
full sub-oo-category of j*(1)-modules, and — ® j*(1) ~ j*(—).

(¢) If F:C — D is any symmetric monoidal functor of presentable symmetric monoidal
oo-categories, then F(5*(1)) is obtained by killing the idempotent pro-algebra F(A).

Proof sketch. We can construct an inverse of X ® AY — Hom,(A, X) as follows: Fix some
i € I, choose j — i such that A; — A; is trace-class and let 1 — A; ® AJV- be the corresponding
classifier. Then consider the composition

Hom(A;, X) — Home(4;, X)® 4, @A) — X ®A].

In the first map, we tensor Hom,(A;, X) with the classifier above. In the second map we use
the evaluation Hom,(A4;, X) ® 4; — X. It’s straightforward but a little tedious to check that

X®A; — Home(4;, X) — X @ A]
Home(A;, X) — X ® Aj — Homg(4;, X)

agree with the transition maps in the ind-objects X ® AY and Hom,(A, X), respectively; we’ll
omit the argument.

Proving that these maps assemble into an inverse map X ® AV — Hom,(A, X)) requires a
non-trivial argument, since we’re working in an oo-category, but there’s an easier way to show
that X®AY — Hom, (A, X) is an equivalence: Equivalences are detected by mo Homp,q(cy(Z, —),
where Z ranges through all compact objects of Ind(C); now any morphism from a compact
object factors through X ® A, or Home(A;, X) for some i € I, and so the observations above
will be enough.

To show (a), plug in X ~ AY: We obtain AY ® AY ~ Hom,(A, AY) ~ (A® A)¥. This proves
idempotence as a coalgebra, because (A ® A)¥ ~ AV follows by dualising A ~ AQ A. If j — i
is large enough so that A; — A; is trace-class, then the dual transition map A; — A]V- is again
trace-class by Lemma 2.2(b). This shows (a).

For (b), since we’ve shown that A" is an idempotent coalgebra in Ind(C), it follows that
7*(1) is an idempotent algebra. Also AY is a nuclear object in Ind(C), since every map Z — AV
from a compact object factors through a trace-class morphism and is therefore trace-class itself.
Since 1 is nuclear too, it follows that j*(1) is nuclear. X ® j*(1) ~ 5*(X) follows immediately
from the above equivalence X ® A" ~ Hom.(A, X). Since the inclusion Ind(C)* — Ind(C) is
lax monoidal by Lemma 2.12, it factors through a functor

Ind(C)* — Mod;« (1) (Ind(C)) .

Since j*(1) is idempotent, Mod x(;)(Ind(C)) C Ind(C) is the full sub-co-category spanned by
the objects of the form X ® j*(1). Hence we also get an inclusion Ind(C)* C Mod j+ () (Ind(C)).
On the other hand, every object of the form X ® j*(1) ~ j*(X) is contained in Ind(C)#. This
finishes the proof of (b).

To show (c), we only need “colim/,; F(A]) ~ “colim/_; F(A;)¥. If A; — A; is trace-class,
Lemma 2.2(c) provides a map F'(A;)Y — F(AJV) in the reverse direction. By a formal argument
as above, this is enough to show the desired equivalence. O
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§2.3. Generalities on refined localising invariants

Throughout this subsection and the next, we fix the following notation: Let Plrgt denote the
oo-category of presentable stable co-categories and colimit-preserving functors. For a regular
cardinal k, we denote by Prgt’ « C Plrgt the non-full sub-oco-category spanned by the k-compactly
generated presentable stable co-categories and those colimit-preserving functors that also
preserve k-compact objects (equivalently, the right adjoint preserves r-filtered colimits). We
equip these oo-categories with the Lurie tensor product and we let P]rgtual - Prgt denote the
non-full sub-oco-category spanned by the dualisable objects and the strongly continuous functors,
that is, those functors whose right adjoint still preserves all colimits.

We also let £ € CAlg(Prk) be a rigid presentable stable symmetric monoidal co-category in
the sense of Definition 1.1. We denote

Prt .= Modg(Prk) and Prlg’fi = Modg(Prgt,H) ,

the latter assuming that € is k-compactly generated. If & ~ Mody(Sp) is the oco-category
of modules over some E,-ring spectrum k, we’ll usually abbreviate these as Pr% and Pr? o>
respectively.

2.15. Localising motives over £. — We define the oo-category of dualisable £-modules as
the module co-category Cati®! := Modg (Catd'®).(>3) Following Efimov [Efi25, Definition 1.20],
we let the oo-category Mot‘lgOC of localising motives over £ be the recipient of the universal
localising invariant on dualisable £-modules.

In the case where & ~ Mody(Sp) is the co-category of modules over some E..-ring spectrum k,
we’ll write Mot}f“ instead; this agrees with the oco-category of localising motives over k£ defined

by Blumberg-Gepner—Tabuada [BGT16].

2.16. Lemma. — Let M(_): Q — Motl‘?C be a diagram such that M; — M; is trace-class for
all rational numbers i < j. Then

Tt (colim MZ> ~ “colim” T'(M;) .
i€Q i€Q
If D is locally rigid and its tensor unit is wi-compact, then the same is true for Z=g-indexed
diagrams with trace-class transition maps.

Proof. This is almost tautological: Since Moti® is rigid, (Mot2°)"8 — Mot¢° is an equivalence.

Since the ind-object “Colim;’e(@ M; is a preimage of M under this equivalence, the first claim
follows. The second claim is completely analogous, since the additional assumptions imply

D"8 ~ Nuc Ind(D), as we've seen in 1.3. O
2.17. Why computing T is hard. — In general, we're faced with at least two difficult
problems:

(1) For an arbitrary motive M € Mot}goc, it can be very hard to decompose M into pieces for

which resolutions as in Lemma 2.16 exist.

(1) Even if such resolutions can be found, computing T'(M;) (and the transition maps between
them) can still be a very hard problem.

23 Catdus!l can be defined without assuming that € is rigid, but usually it won't agree with Modg (Catd'®!).
See [Efi25, §1.3].

17


https://arxiv.org/pdf/2502.04123.pdf#theo.1.20
https://arxiv.org/pdf/2502.04123.pdf#subsection.1.3

§2. REFINED LOCALISING INVARIANTS AND HOW TO COMPUTE THEM

In §2.4, we'll explain how to solve problem (!) in many cases of interest, which will include
THH™(Q), THH™ (L}S(,)/S(,) and THH*!(S[z]). The entirety of §§3-4 below will then be

spent on problem (!!) for THH™(Q), and we will only be able to obtain an answer after base
change to ku.

But before we dive into the difficult calculations, let us discuss another easy case. To this
end, recall from [Efi25, Definition 1.48] that a dualisable £-module category X is called smooth
if the coevaluation Sp — XY ®¢ X preserves compact objects, and proper if the evaluation
X ® XY — &£ preserves compact objects. Here X'V denotes the dual of X as an £-module.

2.18. Lemma. — Let X be a dualisable £-module.
(a) X is smooth and proper in the sense above if and only if X is dualisable in Catgual.
(b) If this is the case, then T™(X) ~ T(X).

(2.4)

Proof sketch. Assume first that X is smooth and proper. We’ll only explain why the coevaluation
and the evaluation over &£, i.e. £ - XY ®c X and X Qg XY — &, are functors in Catgual; the
triangle identities are then straightforward to verify. Since Sp — XY ®g X is strongly continuous
by smoothness, the same will be true for the composition

g—>5®(XV®gX)—>XV®gX

by [Efi25, Proposition 1.12(ii)]. So the coevaluation is a functor in Cat"d. Moreover, we have
XY ~ Hom$"!(X, £) by [Efi25, Proposition 3.4(iii)]. Since £ was assumed symmetric monoidal,
Catgual admits an internal Hom, which necessarily lifts Homdgual. Hence we get an evaluation
X ®eg XY — &£ in £ as well.

Now assume that A is dualisable in Cat?;ual. Then & — XY ®g X is strongly continuous,
hence it sends the tensor unit (which is compact as £ is rigid) to a compact object. Then the
same must be true for Sp — XY ®¢ &', proving smoothness. For properness, we already know
that X ®¢ XY — & is strongly continuous, so it remains to show the same for Y@ XY — X ®g X'V.
To this end, write

XA Re XY >~ (XRXY) Rege £

and use that £ ® &€ — €& is strongly continuous by rigidity. This finishes the proof of (a).
Part (b) is an immediate consequence of this and Lemma 2.16, applied to the constant X'-valued
diagram, which has trace-class transition maps since the identity on any dualisable object is
trace-class. O

2.19. Corollary. — Let £ — X be a strongly continuous symmetric monoidal functor into
another rigid symmetric monoidal presentable stable co-category. If X is smooth and proper as
qual _, Catgual preserves trace-class morphisms.

an £-module, then the forgetful functor Caty

Proof. By Lemma 2.18(a) and the general fact that X ~ X (see [GR17, 1.9.2.1] or [Efi25,
Proposition 1.3]), we see that X is a self-dual E.-algebra in Catcglual. The assertion then
becomes purely abstract nonsense: For X-modules M and N, the diagram

Hom$™ (M, X) ®x N —— Hom3P™ (M, X) ®x (¥ ® N) —— Hom"™ (M, €) @ N

| J J

I‘I()ideual(M,N) I_Ioimdxual(M, X ®s N) ~ Homdual(M,N)

29 Note that being dualisable in Catg"® is much stronger than being a dualisable £-module.
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commutes, where the horizontal arrows in the left square are given by the unit N' — X ®¢ N of
the “wrong way” adjunction between the forgetful functor and X ®¢ —: Catgual — Cat‘jl(ual. O

§2.4. A recipe for computation

We continue to fix the notation from §2.3 as well as a symmetric monoidal localising invariant
T: Mot® — D.

From now on, we’ll additionally assume that D is locally rigid and its tensor unit is wi-compact,
so that D'& ~ NucInd(D) by [Efi25, Theorem 4.2].

Our goal in this subsection is to explain a method to compute certain values of the refinement
Tr*f. This method is a more or less straightforward abstract reformulation of the method that
Efimov uses in his computations (see e.g. [Efi24, Talk 6]).

2.20. Motives of interest. — Let £ — X be a strongly continuous symmetric monoidal
functor into another rigid symmetric monoidal presentable stable co-category. Assume that X
is smooth and proper as an £-module. We wish to compute T (/) for localisations U C X
that arise as in 2.6. That is, there is some object Vj € X with a left-unital multiplication such
that U is the full sub-oco-category spanned by those U € X’ for which Hom (Vp, U) ~ 0. Let us
additionally assume that the following is satisfied:

(V') There exists a tower of Eq-algebras in X,
Voe—Vie— Voo,

such that each V, is dualisable in X and contained in the thick tensor ideal (that is, the
smallest full sub-oo-category closed under finite limits and colimits, retracts, and — ® X
for all X € X) generated by V. Moreover, we assume that for all r > 0, the induced map
Vig1 ®V, = V. ®V,. factors through the multiplication

Vi1 @V, 51,

as a map of Vey1-V.-bimodules.

The main example to keep in mind is the following: Suppose we're given maps v;: Z; — 1y for
i =0,1,...,n, where each Z; is dualisable in X. Then we can define V, as the iterated cofibre

Veim T/ (057, 03"

for some entry-wise increasing sequence of (n + 1)-tuples o, = (a1, ..., ) and equip the
tower {V,.},>0 with Burklund-style E;-structures. We’ll discuss in §2.5 why this satisfies (V')
and how this allows us to recover many examples of interest, such as THH™ (Q), THH™! (S[z]),
and THHref(LﬁS(p) /Sp)) (note that the last example doesn’t quite fit this situation, which will
cause us some pain).

2.21. Theorem. — Let £ be rigid and let T': MotlgOC — D be a localising invariant such that
D is locally rigid and its tensor unit is wi-compact. Let X and U be as in 2.20.

(a) The pro-object “lim;,, T(RMody, (X)) is idempotent over T(X) and its transition maps
are trace-class.
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(b) TN (U) is obtained from T(X) by killing this idempotent pro-algebra. In particular, T™ ()
sits inside the following cofibre sequence in D8 ~ NucInd(D):

“colim” T(RMody, (X)) — T(X) — T U).

We start the proof of Theorem 2.21 with a few easy observations about the “closed comple-
ment” of U in X.

2.22. Lemmma. — Let X and U be as in 2.20.

(a) The inclusion U — X admits a left adjoint 7*: X — U, which can be canonically equipped
with a symmetric monoidal structure.

(b) IfV C X denotes the kernel of j*, then V is a tensor ideal and closed under colimits,
finite limits, and retracts in X. If S runs through a set of generators of X, then Vo ® S
forms a set of generators of V.

(¢) Forallr >0, the Eq-algebra V, is a compact object of X, and every left- or right-module
over V,. is contained in V.

Proof. Part (a) follows immediately from 2.6. Since j* is symmetric monoidal and preserves
all colimits, its kernel ¥V must be a tensor ideal and closed under colimits, finite limits, and
retracts. Now let V € V be an object such that

0 ~ Homy (Vo ® S, V) ~ Homy (S, Homy (Vp, V))

for all S. Since S runs through a set of generators of X, this implies Hom y(Vp, V) ~ 0. Hence
also V € U and so V ~ j*(V) ~ 0. This finishes the proof of (b).

To show (c), observe that any X € X is dualisable if and only if it is compact (because in a
rigid presentable symmetric monoidal co-category idx : X — X is trace-class if and only if it is
compact; see [Ram24, Corollary 4.52] or [Efi25, Proposition 1.7]). Hence V; is compact for all
r > 0. To show that any left- or right-V,.-module is contained in V, it suffices to show the same
for induced modules (i.e. those of the form V, ® X), since every module is a colimit of induced
ones. By the thick tensor ideal condition in 2.20(V'), we can furthermore reduce to objects of
the form Vo ® X. Now if U € U, then

Homy (Vo ® X,U) ~ Homy (X, Homy (Vo,U)) ~ 0,
proving j*(Vp ® X) ~ 0, as desired. O
2.23. Lemma. — For every r > 0, the base change functor

- ®v,,, Vr: RMody, ., (X) — RMody, (X)

is a trace-class morphism in Cat3*®, hence also in Catd"al,

Proof. The additional assertion will follow immediately from Corollary 2.19 once we’ve shown
the rest. Writing RMody, (X') ~ RMody, (Ind(X*))®ryq(x«) X, we may reduce to the case where
X is compactly generated, as — ®pq(xw) X preserves trace-class morphisms by Lemma 2.2(b).
In the compactly generated case, we’ll even show that — ®y, ., V. is trace-class in PrI;aw.
Recall from [L-HA, Remark 4.8.4.8] that RMody, , (X) is dualisable in Pr% with dual
LMody,,, (X). Therefore, the base change functor is always trace-class in Prk. The witnessing
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functor & — LMody,,, (¥) ®x RMody, (X) ~ LMody,  gyer(X) is the classifier of V; as a left

module over V,,1 ® VP, or equivalently, a V;.,1-V — r-bimodule. If we work in PrI;(M instead,
then RMody,_, (X) will no longer be dualisable, but we can still form the predual

Homp, 1 (RMody,,, (X), X) ~ Ind(Funxw (RMody,,, (X)¥, X*)) ~ Ind(LMody, ,, (X*)) ,

where we’ve used [L-HA, Theorem 4.8.4.1] and the fact that V.41 € X* by Lemma 2.22(c).
Using [L-HA, Theorem 4.8.4.6], we still have a functor

X — Ind(LMody,,, (X*)) ®x RMody, (X) ~ RMody, (Ind(LMody,_, (X*)))

in Pr’ that classifies V, has a right V,-module in Ind(LMody,,, (X)). For the desired trace-class
property to hold, this functor needs to be contained in PrIjgw. That is, we need V, to be a
compact object in RMody; (Ind(LMody;, (X“))).

To this end, recall our assumption 2.20(V') that V,1; ® V,, — V,. ® V, factors through the
multiplication V, 41 ® V. — V. as a map of V,.;1-V,-bimodules. Consequently, V, is a retract of
V; ® V. in RMody, (Ind(LMody,_, (X*))). This is enough to show compactness. Indeed, the
object V;. € Ind(LMody;,, (X*)) is compact'®>®) and so the induced right-V,-module V, ® V;
must be compact. O

2.24. Remark. — As a consequence of the proof of Lemma 2.23 and Lemma 2.2(b), we see
that the functors

Ind LMOdVT (Xw) ®Ind(X‘*’) X — Ind ]—_41\/[0(:].{/“‘_1 (Xw) ®Ind(X“’) X.

induced by the forgetful functors LMody;, (X*) — LMody,,, (X*) are also trace-class in Cat$'™,
hence in Catgual by Corollary 2.19.

The reader familiar with some of Efimov’s computations of refined invariants will have already
seen Ind LMody, (X*) ®q(xw) X, albeit in disguise: For example, it is the abstract analogue

of D (Q[x]/2") in Efimov’s computation of HC™ ™ (Q[2%1]/Q[z]) (see e.g. [Efi24, Talk 6]).
Also note that the forgetful functors LMody, (X¥) — X* will land in V by Lemma 2.22(c) and
so we get functors

Ind LMody, (X*) ®maxw) X — V.

for all » > 0. These are compatible with the functors above.

2.25. Lemma. — With notation as above, the functors from Remark 2.24 induce an equiva-
lence of X-linear presentable co-categories

colim (Ind LMody, (X*) ®pna(x+) &) — V.

r=0

dual

t}“al, or equivalently, in Catg"™ or Prsljt.

Here the colimit on the left-hand side is taken in Ca
Proof. We'll prove this under the assumption that A" is compactly generated; to reduce to this
special case, apply Lemma 2.26 below for Ind(X*) — X. Since X is rigid, compact objects are
closed under tensor products, since they coincide with the dualisable objects. By Lemma 2.22(b),
this implies that V is again compactly generated. By construction, Ind LMody, (X)) — X

(25)By contrast, V; is usually not compact in LMody, ,, (X).
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preserves compact objects, hence the same is true if we restrict the codomain to V. Using that

Prl“t’w — Prly preserves all colimits, we deduce that

L: colimInd LMody, (X¥) — V

r=0

is a functor in Prl:mw. In particular, whether L is fully faithful can be checked on compact
objects. So let M and N be compact.
Writing colim, > Ind(LMody;, (X*)) ~ Ind(colim,>o LMody, (X*)), we may assume that M
and N are V,-modules for some r. We must then show that
colim Homy, (M, N) — Homy (M, N).

s=r

is an equivalence. To this end, let us rewrite this map as

colim Homy, (Ve ®v, V) ®v, M, N) — Homy, ((V; ® V) ®v, M, N) .

For all s > r, consider V, ® V;. as a right-V;;1-module via the right action on the first tensor
factor and as a left-Vsy1-module via the left action on the second tensor factor. In total,
we’ve produced a right-(Vyy; ® V;O}:l)—module structure on V, ® V;.. Since V. ® V, is already
a right-(Vs ® V'P)-module via the same construction, the identity on V;. ® V,. factors through
V,®V;) ®V, 1oVer, Vs ® V5P, By Assumption 2.20(V), Viy1 ® Vi1 — Vi ® Vs factors through
Vs+1 as a map of Vi11-Viy1-bimodules, or equivalently, as a map of left-V;11 ® V;Cfl—modules.
This shows that the identity on V, ® V,. factors through

(VT ® VT) ®V5+1®V50+p1 s+1 >V ®Vs+1 Vi

This factorisation works as V,-V,.-bimodules, since we haven’t touched the “outer” V,-V,.-
bimodule structure anywhere and have only worked with the “inner” bimodule structures. Thus,
the colimit diagram above can be intertwined with the constant Homy, ((V, ® V;.) ®y,. M, N)-
valued diagram, which proves that we get the desired equivalence.

Hence L is fully faithful. Once we know this, essential surjectivity follows immediately from
Lemma 2.22(b), so we win. O

2.26. Lemma. — Let X — X’ be a symmetric monoidal colimit-preserving functor into
another rigid presentable stable symmetric monoidal co-category X'. Let Vi denote the image
of Vo, let U := (X")V6 C X' and let V' be the kernel of the left adjoint X' — U’ of the inclusion.
Then the induced functor

Ver X —V

s an equivalence of co-categories.

Proof. It’s enough to show this in the case where X is compactly generated, since the general
case will follow by considering Ind(X*) — X — X’. By Lemma 2.22(b), V is a tensor ideal and so
the inclusion V — & is X-linear. Note that its right adjoint is again X-linear. Indeed, the right
adjoint is given by fib(X — j*(X)) for all X € X, so we must show that j*(X)®Y — j*(X®Y)
is an equivalence for all Y € X. Since we assume X to be compactly generated, it suffices to
show this in the case Y € X“, as both sides commute with filtered colimits. But then Y is
dualisable as X is rigid. Since U’ is stable under tensoring with dualisable objects, we obtain
JFX)QY ~j*(1*(X)®Y) ~ j*(X ®Y) from 2.6, as desired.
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It follows that V @y X — X’ is fully faithful, since we can now just base change the fact
that the unit is an equivalence. Its essential image is clearly contained in V', and it’s clear from
Lemma 2.22(b) that V,, ®x X’ — V' is essentially surjective. O

Proof of Theorem 2.21. By Lemma 2.23 and Lemma 2.2(b) applied to the symmetric monoidal
functor T: Catd'® ~ Mody (Catdia!) — Modp(x)(D), the transition maps of the pro-object
“lim;’,, T(RMody, (X)) are trace-class morphisms in Mody(xy(D). To prove (a), it will thus be
enough to check that the dual ind-object is an idempotent coalgebra.

To see this, write RMody, (X') ~ RMody, (Ind(X*)) ®q(xw) X. We've seen in the proof
of Lemma 2.23 that the predual of RMody, (Ind(X*)) in Pr%nd()(‘*’),w is Ind LMody, (X“). Now
consider the diagram of symmetric monoidal functors

~®rmaxe) X
Py w ——EE, Catg™ —— Mody(Mot®) —— Modgx)(D)

| T

dual 1
Catlﬁlc?()cw) MOtI(I)l((:l(X‘*’)

In general, none of them preserves preduals, but once we pass to “colim],, this isn’t a
problem anymore by Lemma 2.2(c). Thus, it will be enough to check that the image of
“colim,’, ; Ind LMody, (X*) is idempotent in Ind(Mot}%‘(’i(Xw)).

For ease of notation, let us now replace X by Ind(X“), thereby assuming that X" is
compactly generated. Since “colim),Ind LMody, (X*) has trace-class transition maps and
NucInd(Mot$¢) ~ Mot$¢ by Efimov’s rigidity theorem, it will be enough to show that
colim, o Ind LMody, (X*¥) ~ V is idempotent in Mot'?®. We claim that V is already idem-
potent in Cathual. To see this, just observe that the same argument as in Lemma 2.25 also
proves that

col>i(r)n Ind LMody, gy, (X¥) — V
>

is an equivalence of oo-categories. This finishes the proof of (a).

Let us now show (b). In the following, we’ll use several times (and in a somewhat confusing
way) that Nuc Ind(Mody(Mot2¢)) ~ Mod x (Mot¢) by Efimov’s rigidity theorem.

The proof of (a) shows that “lim;,, RMody, (X) is idempotent in Pro(Mod x (Mot ©)),
its dual ind-object has nuclear transition map, and the dual ind-object is sent to V un-
der NucInd(Mody(Mot¢)) ~ Mody(Mot¥). Since V — X — U becomes a cofibre se-
quence in Moty (Mot¢), it follows that the preimage of & under NucInd(Mod y(Mot)) ~
Mod .y (Mot2¢) is obtained from X by killing the pro-idempotent “lim;’,y RMody, (X). This
is necessarily also true as E,.-X-algebras, since the E-structure will be idempotent over X
by Lemma 2.14(b) and thus unique. Since any symmetric monoidal functor preserves killing
idempotent pro-algebras with trace-class transition maps by Lemma 2.14(c), the statement
of (b) follows. O

§2.5. Burklund’s E;-structures and square-zero extensions

In this subsection we show that tensor products of two Burklund-style [E{-structures on quotients
are often trivial square zero algebras. We then use this technical result to make Theorem 2.21
applicable in many cases of interest.
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For the abstract setup, let C be a presentable stable Eo-monoidal oco-category and v: Z — 1
be a morphism in C such that 1/v admits a right-unital multiplication. Fix ag > 3, so that
1/v* admits a preferred Eg-algebra structure by [Bur22, Theorem 1.5]. The same theorem
shows that 1/v® admits a preferred E;-algebra structure for all a > 2. Via base change, we get
an E;-structure on 1/v*° ® 1/v* in the Ej-monoidal stable oco-category LMody /ya0 (C).

2.27. Proposition. — With notation and assumptions as above, suppose additionally that C
1s rigid, T is dualisable in C, and o > ag + 3.

(a) If we equip 1 /v @ L(T® /v®) with the trivial square-zero Eq-structure over 1 /v, then
the equivalence of left 1 /v* -modules

/0% @ 1/v% ~ 1 /v @ (I /v°0)

lifts canonically to an equivalence of Ei-algebras in LMody /ya0(C). Under this iden-
tification, the multiplication 1/v* ® 1/v® — 1/v*° becomes the augmentation map
1/v% @ N (T%/v20) — 1 /v,

(b) Foralla' > a > ag+3, the map 1/v*° @ 1/v™ — 1/v™ ® 1/v* agrees with the map
of trivial square-zero extensions induced by v o I®“//va0 — I® /[y as maps of
[Eq-algebras in LMody /ya0 (C).

2.28. Remark. — The bound « > ag + 3 doesn’t seem optimal and the author suspects that
Proposition 2.27 might already be true for a > «g. It also seems reasonable that the result
should be true for any compatible E;-structures on 1/v*° and 1/v®, but we don’t know how to
show this.

2.29. Remark. — Since the bounds ag > 3 and « > «ag + 3 ensure that the E;-algebra
structures on 1/v*° and 1/v® refine to Eq-algebra structures, the multplication map in Propo-
sition 2.27(a) is canonically a map of Ej-algebras. The identification with the augmentation
1/v% @ B(Z% /v*0) — 1 /v also holds as Ej-algebra maps (as we’ll see in the proof).

Proof of Proposition 2.27. Recall [Bur22, Constructions 4.7 and 4.8]: Let C := Def(C, Q) be the
deformation of C that Burklund uses. The specific construction is irrelevant for the purpose of
this proof; the reader only needs to know that Cisa presentable stable Es-monoidal co-category
and comes with Ey-monoidal functors v: C — C (which is non-exact) and (=)™=':C — C
(which preserves colimits and is therefore exact) such that v(—)"=! ~ id¢. Let furthermore
1 := (1) denote the tensor unit of C and let Z := ¥ 1»(XZ). Even though v is non-exact,
v(1) — v(1/v) — v(SI) is still a cofibre sequence in C and so v(v): ¥(Z) — 1 factors through
a map

Then ¥ is a deformation of v in the sense that 37=* ~ v.(26) Tt will thus be enough to show the
assertions with v replaced by v: 7 1.

Burklund constructs E;-structures on 1 /0% for o > 2 using the obstruction theory from
[Bur22, Proposition 2.4] in C. The reason to replace C and v by their deformations C and 7 is
that for the deformed versions all obstructions vanish (because the obstruction group vanishes),
and the witnessing nullhomotopies are unique (because the next homotopy group also vanishes).

(26)Note that ¥ is usually not the trivial deformation v(v), as the canonical map v(Z) — Z is usually not an
equivalence. This is crucial to make Burklund’s construction work.
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The base-changed E;-structure on 1 /o0 ®1 /0 is then obtained via Burklund’s obstruction
theory in the Ei-monoidal®>7) presentable stable oo-category LMody /590 (C). The main step to
prove both (a) and (b) is to show that in this case too all obstructions vanish and the witnessing

nullhomotopies are unique. More precisely, we’ll show that for all k > 2 and all &/ > o > ag + 3,

m Homy o o) (2—3(22@/6&0)@0‘/)@’“,i/ﬁao @i/ﬁa> >0 forie{0,1}.

/9%
To show this, we use that T /5% @ —: C — LModj /590 (CN) is left adjoint to the forgetful functor,
that 1/0% @ 1/0 ~ 1 /5% @ S(Z®/520) as left-1/5*0-modules, and that Z is still dualisable,
with dual ZV ~ Yv(X~'ZV). The left-hand side above can then be rewritten as follows:

- Homg(z%—?’fwk, 1/5% @ (78 /5&0))
=y Homc~ (22]673%@&%, i/T}aO> @ m; H0m5<22k72i—®a/k ® (iV)@a’) i/%a())
= Homg(E_a/k""%_?’u(X), 'IT/T;“O) O Hom5<z—a’k+a+2’f—2u(y), i/?}%) ,

where X ~ (2Z)®¥F and Y ~ (ZZ)®¥'*@(S~12V)®. According to [Bur22, Lemma 4.8] (which
is applicable thanks to our rigidity assumption on C), both summands on the right-hand side
vanish for i € {0,1} as soon as &'k — o — 2k + 1 > ap. Under our assumptions o' > o > ap + 3
and k > 2, we can estimate

dk—a—-2k+1>(ap+3)(k—1)—2k+1=(k—1ap+k—2> o,

as desired. This shows that indeed all obstructions vanish (because the obstruction group g
vanishes) and the witnessing nullhomotopies are unique (because 71 also vanishes).

Now (b) as well as the first part of (a) immediately follow. Indeed, in the case o/ = a, the
vanishing result above combined with [Bur22, Remark 2.5] shows that the E;-structure on
1 /U0 Q1 /0% is unique, so it has to be the trivial square zero structure. For general o/ > «, the
same argument shows that the E;-map 1/7% ® 1/ — 1/3% @ 1/3“ is unique, proving (b).
To show the second part of (a), observe that, with notation as above, we must also have

i Homa(z—a”f”’“—%()(),i/z?%) =0 forie{0,1}.
This precisely ensures that 1/7% @ 1/5* — 1/ is unique as well, and so it has to be the
augmentation map. O
2.30. Corollary. — If T is dualisable, o > a9 + 3, and o/ > o + ag, then
1/v% @ 1/v* — 1/v™ @ 1/v°
factors through the tensor unit 1/v*® as a map of E1-algebras in LMody /ya0 (C).

Proof. By Proposition 2.27(b), it’s enough to check that v® ~®: Z® /ye0 _, T /20 jg zero
in LModj /ye0 (C) for o' > a 4 ag. This reduces to v®0: T8 [y — 1 /9™ being zero in
LMody /a0 (C). Since 1/v* ® —: C — LMody /a0 (C) is left adjoint to the forgetful functor,
this is equivalent to v : Z7® — 1 /v being zero in C, which is true by construction. O

(27 Burklund’s paper assumes an Ey-monoidal structure, but for the purpose of [Bur22, §2] only an E;-monoidal
structure is necessary.
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Thanks to Corollary 2.30, it is now easy to construct examples where Assumption 2.20(V)
is satisfied and thus Theorem 2.21 is applicable.

2.31. Example. — Let m be a positive integer that is either coprime to 2 or divisible
by 4. Then S/m admits a right-unital multiplication and so Burklund’s construction applied to
m: S — S provides a tower of E;-algebras

S/m? «— S/m?® «— S/m* — ...

Up to passing to an appropriate subtower, this satisfies Assumption 2.20(V'). Indeed, dualis-
ability and the thick tensor ideal condition are clear and the factorisation condition follows
from Corollary 2.30 above.

Thus, for any Ee-ring spectrum k, Theorem 2.21 shows that THH™! (k[1/m]/k) is obtained
from THH(k/k) ~ k by killing the idempotent pro-algebra “lim;.; THH((k ® S/m®)/k). In
particular, there’s a cofibre sequence

“ng{n” THH((k@S/mO‘)/k)v e k‘ e THHref(k'[%]/k) .

in Nuc Ind(Mody(Sp)B"). Since THH™ (- /k) commutes with filtered colimits, this also allows
us to compute THH* (k ® Q/k) ~ colim,,eny THH* (k[1/m]/k).

2.32. Example. — If k is any E..-ring spectrum, we can compute THH™ (k[z]/k) as follows:
Let IP),lg denote the flat projective line over k, which is smooth and proper over k. We can
construct a tower of E;-algebras

Ha /et — kla)/a 7t K

either by hand (construct k[z~!] as a graded E,.-k-algebra with z~! in graded degree —1,
then truncate the grading) or by applying Burklund’s construction to OP}@ (1) — (’)p}c (this
will only give the tower from the second step onwards, but this is no problem). In either case,
Assumption 2.20(V') will be satisfied and so Theorem 2.21 provides a cofibre sequence

“colim” THH ((k[z~*]/a~*)/k)" — THH(P}/k) — THH" (k[z]/k)

a>1

in Nuc Ind(Mod,(Sp)B5™).

As a final example, let us explain how Theorem 2.21 applies to THHref(LfLS(p) /S(p)); where

L£ denotes telescopic localisation to chromatic height < n. First we need a technical lemma:

2.33. Lemma. — Letm > 2 andn > 0. Let V! — V be a map of E,y1-algebras whose

underlying spectra are of type n. Let v: SNV — V be a vy-self map of V and v': SNV — V'’

a vp-self map of V.

(a) Up to replacing v' by a suitable power, the induced map v' @y V : SNV = V can be
chosen to be a power of v.

(b)  Suppose v is the fourth power of another v,-self map of V', so that V/v admits a right-
unital multiplication in LMody (Sp(y)). Furthermore, assume that v' is as in (a) and V' /v'
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admits a right-unital multiplication in LMody(Sp). Then the canonical left-V-module
map
V//U/m+1 ®V’ V — V/Um+1 )

can be upgraded to an E,,-algebra map in LMody (Sp), where we equip V/v™* ! and

V' Jo"™ Y with Burklund’s By, -structures in LMody (Sp) and LMody(Sp), respectively.

Proof sketch. Part (a) follows immediately from asymptotic uniqueness of v,-self maps (see
[L-Ch, Lemma 27.10] for example).

To show (b), let us denote V/v"™+1 := V' /o™ @y, V for short. First note that the claim
is not completely automatic, since the E,,-structures on V/v™+! and V/v"™*! are constructed
via different deformation categories. More precisely, let Q and Q' be the classes of morphisms
in LMody (Sp)¥ that become split epimorphisms upon — ®y V/v or — ®y V/v', respectively.
Then the E,,-structure on V/v™ ! is constructed via Def(LMody (Sp); Q), whereas for V/v™*!
we use Def(LMody (Sp); Q).

Our assumptions on v and v’ imply that V/v' — V/u can be turned into an E;-map in
LMody (Sp). This need not be compatible with the E;-structures on V/v™ ! or V/v/™*+1 but it
is enough to ensure @' C Q, because any morphism that becomes split after —®y V /v’ will also
become split after (— ®y V/v') Qv V/v >~ — ®y V/v. Sheafification then induces a strongly
continuous E,, 1-monoidal functor Def(LMody (Sp); Q') — Def(LMody (Sp); Q) which fits into
a commutative diagram

Def (LMody (Sp); Q') —— Def (LMody (Sp); Q)

”ﬂ /

LMody (Sp)

where v and v/ denote the respective Yoneda embeddings.

Let us now denote deformations in Def(LMody (Sp); Q) by (=) as in the proof of Propo-
sition 2.27. Via the functor above and [Bur22, Proposition 2.4], we can write V /™!
as an iterated pushout of E,,-algebras in Def(LMody (Sp); Q). This yields a sequence of
obstructions to constructing an E,,-algebra map ‘N//ﬁ’m“ — 17/17’”“. Since the functor
Def(LMody (Sp); Q') — Def(LMody (Sp); Q) intertwines v/ and v, the obstructions are still of

the form that automatically vanishes. O

2.34. Example. — For all m > 2 and n > 0 let us construct a tower of E,,-algebras

of the form V(n), ~ S/(p®0,v{™", ... ,vn""), such that Assumption 2.20(V) is satisfied. Note
that the dualisability condition in 2.20(V') is trivial and the thick tensor ideal condition is
automatic by the thick subcategory theorem (see [L-Ch, Theorem 26.8] for example). So we
only have to construct the tower and verify the factorisation condition.

We use induction on n. Suppose we’'ve already constructed a tower of E,,,1-algebras
(V(n —1),)r>0 with the desired properties. We’ll write V. := V(n — 1), for brevity. Using
Lemma 2.33 for V, 1 — V;., we can inductively construct v,-self maps vy, ,: YNV, — Vr such
that each of them is the fourth power of another v,-self map and the quotients

V= Ve fup 7Y
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fit into a tower of E,,-algebras. Note that this would already work with V,./ v:{fjl; the extra
factor in the exponent will only be used for the factorisation condition.

As in the proof of Lemma 2.25, consider the right-V,; ® V;"P-module structure on V, 1@V,
given by its “inner” bimodule structure. Since V11 ® V. — V. ® V,. factors through V,. by the
inductive hypothesis, we see that V,,1 ® V, — V, ® V, factors through

(VrJrl ®Vr) ®VT+1®V7?’P’ Vi~ (Vr+1 ®Vr+1 ‘/r) v, Vr

as a map of V,,1-V -bimodules. If we now consider the composition V,, o @V, — V,QV,,
we see that it factors through

W/Uif:i(lm+l) ®v, Vy — W‘/UiT:Jlr(lerl) ®v, V.

This, in turn, factors through V, as a map of Ej-algebras in RMody, (Sp). Indeed, this follows
from Corollary 2.30 via base change along V. /virf,:_"f b, v, /v,%j,(,mﬂ) ~ V,. So we get the
desired factorisation for V, 1o ® V, — V,, ® V.. Thus, if we put V(n), = Vy,, we get a tower
of the desired form.

With these disgusting technicalities out of the way, we can finally apply Theorem 2.21: We
deduce that THHref(LfLS(p) /S(p)) is obtained from S, by killing an idempotent pro-algebra of

the form “lim;’,, THH(S/(p*"°, vi™" ..., op"™)). In particular, we get a cofibre sequence
“Cgl>i(1;n” THH(S/(p*°, v . on™)) — Sy — THH™ (L{;S(p)/S(p))

in Nuc Ind(Sp]éf); .
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§3. Refined THH and TC™ over ku

We've seen in Example 2.31 that to compute THH™(Q), one essentially has to compute an
ind-object of the form “colim},_, THH(S/p®)" for all primes p. This seems currently out of
reach. However, after base change to ku, we can get some control over THH((ku ® S/p®)/ku)
thanks to the results from [Wag25a], and so THH*f (ku ® Q/ku) is approachable.

In this section we study TC™ " (ku ® Q/ku) and TC™" (KU ® Q/KU), which contain the
same information as THH™! (ku ® Q/ku) and THH™ (KU ® Q/KU) by Lemma 3.2 below. In
§3.1, we compute the homotopy groups

Af, = TCT™ (ku® Q/ku) and Agy = m TC™™(KU ® Q/KU)

in terms of certain ¢g-Hodge filtrations fil’ 4, ¢-dR(z /0,7, and the associated g-Hodge com-
q-Hdg (Z/p*)/Zp

plexes q—Hdg(Z /p)/Zp that we get from the chosen E;-structures on S/p®. In §3.2 we’ll explain

how to describe these objects explicitly. These explicit descriptions will then be used in §4 to

finish the proof of Theorems 1.10 and 1.11.

3.1. Convention — Throughout §§3-4, all (¢-)de Rham complexes and ¢g-Hodge complexes
relative to a p-complete ring will be implicitly p-completed.

§3.1. g-Hodge filtrations and TC ™" (ku ® Q/ku)

We begin by showing that for complex orientable ring spectra k, THH™ (k ® Q/k) with its
Sl-action contains the same information as TC™™ (k@ Q/k).

3.2. Lemma. — Let k be a complex orientable Eo-ring spectrum, equipped with trivial
Sl-action, and let t w_g(khsl) be any complex orientation. Then taking S'-fized points
defines a symmetric monoidal equivalence

(—)"": Mody(Sp)®%" > Mod, .51 (Sp); ,

where Mods!' (Sp); denotes co-category of t-complete kMS -module spectra, which we equip
with the t-completed tensor product — @)khsl —.

Proof. By construction (—)hs1 is lax symmetric monoidal. To see that it is strictly symmetric
monoidal, we must check whether M hst ®kh51 NhST (M ® N )hS1 is an equivalence. As
both sides are t-complete, this can be checked modulo ¢, where it follows from [HRW22,
Lemma 2.2.10] for example.

By definition, (—)hSl: SpBS" — Sp has a left adjoint, given by the symmetric monoidal
functor const: Sp — SpP? 1, which sends a spectrum X to itself equipped with the trivial
Sl action. By general nonsense about how symmetric monoidal adjunctions pass to module
categories, we see that (—)"5": Mody(Sp)BS" ~ Modk(SpBSI) — Mod, ;51 (Sp) admits a left
adjoint L, which is given as the composition

_®khsl k

L: Mod, 1 (Sp) 2% Mod, .1 (Sp®*") Mody, (SpP*") ~ Mody (Sp)®S" .

In particular, on underlying k-modules, L is simply given by (—)/t. Since (—)/t is conservative
on t-complete k™" -modules, it follows that L: Mod, .51 (Sp); — Mody,(Sp)BS" must be con-
)

servative too. Furthermore, the counit ¢: L((— = id is an equivalence, as follows from
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[HRW22, Lemma 2.2.10] again. Thus (—)"5" must be fully faithful. We conclude using the
standard fact that an adjunction in which the right adjoint is fully faithful and the left adjoint
is conservative must be a pair of inverse equivalences. O

We'll now set out to compute 7, TC™"* (ku ® Q/ku) and 7, TC™"(KU ® Q/KU).

3.3. Outline of the computation. — For convenience, let’s call a positive integer m high-
powered if its prime factorisation m = Hp p* has the following property: For all primes p > 2
either a, = 0 or o, > 2 and for p = 2 either as = 0 or ap is even and > 4. We let N? denote
the set of high-powered positive integers, partially ordered by divisibility.

Since S/4 and S/p admit right-unital multiplications, we can use Burklund’s general con-
struction [Bur22, Theorem 1.5]31) to construct Ei-structures on

S/m ~ HS/po‘p
p

for every high-powered m. These assemble into a functor S/—: N¥ — Algg (Sp). In the
following we’ll write ku/m =ku® S/m and KU/m := KU ® S/m, where it is understood that
the Ei-structure is always base changed from the one on S/m above. By Example 2.31 and
Lemma 3.2, we get a cofibre sequence

“C()(ligl” TC™ ((ku/m)/ku)” — kuS' — TC™ " (ku ® Q/ku)
me(Nz)op

(where now (—)¥ := Hom,_,s1 (-, ku”d 1) denotes the dual in ku"® 1—modules) and a similar one
for KU. To compute the pro-object on the left, we’ll proceed in three steps:

(a) We compute the homotopy groups 7, TC™ ((ku/m)/ku) and m, TC~ ((KU/m)/KU) using
[Wag25a, Theorem 4.27]. This will be the content of Corollary 3.8.

(b) We compute 7, TC™ ((ku/m)/ku)¥ and 7, TC™((KU/m)/KU)", essentially showing that
in this case taking duals commutes with 7, in a derived way. This will be achieved in
Corollary 3.10.

(¢) We show that pro-idempotence and the transition maps being trace-class passes to
homotopy groups in this case. This will be the content of Corollaries 3.12 and 3.13.

This leads to a preliminary description of the homotopy rings ms TC™™ (ku ® Q/ku) and
7 TC™™ (KU ® Q/KU) in Theorem 3.14.
We begin with step (a).

3.4. Reduction to the p-torsion free case. — Decomposing m = Hp p?? into prime
powers, we have

TC™ ((ku/m)/ku) = [ TC™ ((ku/p*)/ku),

so we may reduce to the case where m = p“ is a high-powered prime power. Let us re-
mark that TC™ ((ku/p®)/ku) is automatically p-complete. Indeed, it is (3, t)-complete and
TC™ ((ku/p®)/ku)/(8,t) ~ HH((Z/p“)/Z) is p“-torsion, hence p-complete.

B-DWe could also use [Bur22, Theorem 3.2] to get another tower of E;-algebras S/8 «— S/16 «— S$/32 — ---.
This one is potentially different from ours (as different deformation categories are used in the construction). It
will become apparent in 3.4 why we made our choice.
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To compute TC™ ((ku/p®)/ku), we lift to a p-torsion free case. Let Zp{x}s be the free
p-complete perfect §-ring on a generator . Since the p-completed cotangent complex of Zp{x} o
vanishes, it lifts uniquely to a p-complete connective E,.-ring spectrum, which we’ll denote
Sz, (2}0e- BY [Bur22, Theorem 1.5], we get a tower of E;-algebras in Sz, {2}, -modules

Stpia}oe /T Szpa}on /T Spp(aya /2t — -

for p > 2; the case p = 2 needs powers of z? instead. The map of perfect 6-rings Lp{x}oo — Ly
sending x — p lifts uniquely to an E-map Sz, (4}, — Sp. If we base change the tower above
along this map, we get the tower of Eq-algebras (S/p®) from 3.3. Indeed, this follows from the
uniqueness statement in [Bur22, Theorem 1.5].(3:2)

Now put kug, (5} = (ku® Sz, (21, )p- Then THH(—/kuy, (1. )p ~ THH(—/ku), holds by
the same argument as in [BMS19, Proposition 11.7] and so we get a base change equivalence

(TC* ((kuz, o). /7%) /K0) @py (). ku;)(p ) IO (ku/p®) ).
3.5. A g-Hodge filtration for Z/m. — We can apply [Wag25a, Theorem 4.17] to
Zp{z}oo [z with its spherical Eq-lift Sz 4. /2 to obtain a filtration i} 4, ¢-dR(z, (2} o0 /o) /2,
on the p-completed derived de Rham complex of Z,{z}/x®. This filtration doesn’t depend
on the choice of spherical lift (only its existence) and g-deforms the Hodge filtration on
dR(z,(z}/z2)/z,- We then construct a filtration on ¢-dRz/pe),z, as the base change

— L "
filg-nag ARz pe) /2, = (ﬁléfHdg G- ARz, (2} oo /22 /2, BT (0} Zp) 1)’
For a general high-powered positive integer m € N¢ with prime factorisation m = ]_[p PP, we
put

i1} t1ag ¢-AR(z/m)/z = [ [ ilft1ag ¢-ARz/p00) /2,
p

and denote its completion by ﬁl;ﬁHdg qchI\{(Z /my/z- We'll verify in Lemma 3.7 below that
the filtered object ﬁl;_Hdg q-dRz/m)/z is indeed a g-Hodge filtration in the sense of [Wag25b,
Definition 3.2], as the notation suggests.

We regard these filtrations as filtered modules over the filtered ring (¢ — 1)*Z[q — 1]. In the
following, this filtered ring will be identified with the graded ring mos (ku* 1) = Z[5][t], where
t sits graded degree —1 and plays the role of the filtration parameter, § sits in graded degree 1,
and Ot = (¢ — 1). We will also consider the ¢-Hodge complex

: (g-1) (g-1) "
(¢—1)
as in [Wag25b, 3.5].

3.6. Remark. — Let m = Hp p“? be an integer such that for all primes p > 2 either o, = 0
or oy = 3 and for p = 2 either ap = 0 or a2 is even and > 6. Then the Eq-structure on S/m
can be upgraded to an Eg-structure. We can thus apply [Wag25a, Theorem 4.27] directly

(3-2)Burklund only shows that the objects in the tower are unique and therefore satisfy base change. But the
same argument shows that the transition maps too are unique, so they satisfy base change as well.
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to obtain another g-Hodge filtration on ¢-dR(z/,)/z, without having to go through the base
change above. However, this ¢-Hodge filtration agrees with the one from 3.5.

Indeed, note that the E;-structure on Sz, (4 /x*r also admits an Eg-upgrade, compatible
with the one on S/p®. Then the assertion follows by naturality and the observation that the
solid even filtration on the already even E;-ring spectrum TCyq ((kug, (4., /2%7)/ku) necessarily
agrees with the double-speed Whitehead filtration 7>9,.

3.7. Lemma. — The filtration ﬁl;_Hdg q-dR(z/m)/z is a q-Hodge filtration in the sense of
[ Wag25b, Definition 3.2]. Moreover, ¢-dRz/m)/z and ¢-Hdgz,m)/z are static (¢ — 1)-torsion
free rings and the q-Hodge filtration is a descending filtration by ideals.

Proof. Let us verify the conditions from [Wag25b, Definition 3.2]. For any prime p, the

A

non-p-completed derived g-de Rham complex ¢-dRz/,ep) /7 vanishes after (—)[1/p] (g—1) 88
(Z/p*)[1/p] = 0. Hence it also vanishes after (—),[1/p] (Aq_l), as any module over the trivial ring
is trivial. It follows that ¢-dR(z/,ep) /7 is already p-complete and thus agrees with ¢-dR(z/per)/z,,-

With this observation, condition (a) of [Wag25b, Definition 3.2] is straightforward to verify.
Condition (b) follows via base change from Z,{z}/x*. The other two conditions are vacuous,
since the rationalisations vanish. Therefore, ﬁl;_Hdg q-dR(z/m)z is indeed a g-Hodge filtration.

To verify that filj 4, ¢-dR(z/m),z is degree-wise static and (g — 1)-torsion free, just observe
that its reduction modulo (¢ — 1) is ﬁl*Hdg dR(z/m)/z, which is degree-wise static. Via base
change from Z,{x}oo /2 it’s then clear that filj 14, ¢-dR(z/m)/z must be a descending filtration
by ideals. By construction, this implies that ¢-Hdg /m)/z 18 & static and (¢ — 1)-torsion free
ring, as claimed. O

The upshot of 3.4-3.7 is the following.

3.8. Corollary. — Let m € N! be a high-powered positive integer. Then the spectra
TC™ ((ku/m)/ku) and TC™((KU/m)/KU) are concentrated in even degrees and we have

7 TC™ ((ku/m) /ku) = 617 1. 4-dR(z/m) /2
725 TC™ ((KU/m) /KU) = ¢-Hdg s /) z[55].

Proof. 1t’s enough to check evenness modulo ¢, so we may pass from TC™ to THH. Since
THH((ku/m)/ku) is connective, we may further pass to THH((ku/m)/ku)/s8 ~ HH((Z/m)/7Z),
which is indeed even. This shows evenness for THH((ku/m)/ku) and then the same follows for
THH((ku/m)/ku)[1/5] ~ THH((KU/m)/KU).
By decomposing m into prime factors as in 3.4 and using the base change equivalence, we
get a map -
ﬁl;ing q_dR(Z/m)/Z — T2% TC™ ((ku/m)/ku) .

Whether this is an equivalence can be checked modulo 3, where we recover the well-known fact
that the even homotopy groups of TC™((ku/m)/ku)/8 ~ HC™((Z/m)/Z) are the completed
Hodge filtration ﬁlﬁdg dR(z/m)/z- The claim that the even homotopy groups of

TC™ ((KU/m)/KU) ~ TC™ ((ku/m)/ku) [$]

are given by ¢-Hdgz/m)/z [8*1] follows formally. O

This finishes step (a) of our plan in 3.3. We’ll now commence step 3.3(b). We start with a
general fact (which is usually formulated as a spectral sequence).
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3.9. Lemma. — Let k be an even Eq-ring spectrum and let M, N be even left-k-modules.
Then the mapping spectrum Homy (M, N) admits a complete ezhaustive descending filtration
with graded pieces

gr* Homy, (M, N) ~ %** RHom,,_ ) (72« (M), 724 (N)) .

Here ¥2*: Gr(Sp) — Gr(Sp) is the “double shearing” functor and RHom,, ) denotes the
derived internal Hom in graded may(k)-modules.

Proof. In the usual adjunction colim: Fil(Sp) = Sp :const, the left adjoint is symmetric
monoidal and the right adjoint is lax symmetric monoidal. Furthermore, colim 759, (k) ~ k.
It follows formally that colim: LMod,_, )(Fil(Sp)) < LMody(Sp) :const is an adjunction as
well and so Homy, (M, N) ~ Hom,_, () (7>2.(M), const V). Hence we may define the desired
filration via

fil" Homk (M, N) = HOHIT>2* (k) (T}Q*(M), T>2(x4n) (N)) .

This filtration is clearly complete since we may pull 0 > limy, 00 T>9(,4n) (V) out of the Hom. To
show that the filtration is exhaustive, we need to check that const N =~ colimy,— — oo T2 (s4n) (V)
can similarly be pulled out of the Hom. To this end, recall that Fil(Sp) can be equipped with
the double Postnikov t-structure in which objects in the image of 7>2,(—) are connective and
connective objects are closed under tensor products (see [Rak21, Construction 3.3.6] for example
and double everything). Then Mod,_, )(Fil(Sp)) inherits a t-structure in which 7>2,(M) is
connective and the cofibres of T-o(,4.,) (V) — const N get more and more coconnective as
n — —oo. This shows that the colimit can be pulled out.

It remains to determine the associated graded. By construction, the n'" graded piece is
given by gr" Homy (M, N) ~ Hom,_, () (7>2:(M), 22(*+")7r2(*+n) (N)). To simplify this further,
let Sgr and Sgj denote the tensor units in graded and filtered spectra, respectively. By abuse
of notation, we identify Sgy with its underlying graded spectrum. As remarked in (c¢), we
have Fil(Sp) ~ Mods,,, (Gr(Sp)); this identifies passing to the associated graded with the base
change functor — ®s,, Sar. Since the Sgj-module structure on 22(*+")7r2(*+n)(N ) already
factors through Sgj — Sqy, we obtain

Hom@m(k) (7'22*(M)7 22(*4_71)772(*4—71) (N)) = HomEQ*m*(k) (ZZ*WQ*(M)7 Z2(>k—~_n)7r2(>‘<'*‘”) (N))
~ N2 Homm*(k) (7F2* (M), 7T2*(N)(_n)) .

The first step is the usual base change equivalence for T, (k) — T>0.(k) ®spy Sar ~ X2 mo.(k),
the second step uses that the shearing functor ¥2*: Gr(Sp) — Gr(Sp) is an E;-monoidal
equivalence (even Eg-monoidal, see [DHL+23, Proposition 3.10], but we don’t need that). Now
the right-hand side is precisely the n'' graded piece of RHom,, ) (m2:(M), 724(N)) and so
we're done. O

We'll apply this now in the case k ~ ku"*", so that mox (k) = Z[B][t]. We also let miz[ﬂ][[t]]
denote the graded Z[B][t]-module H_; RHomy/g, for all i > 0.

3.10. Corollary. — Let m € N? be a high-powered positive integer. Then the spectra
TC™ ((ku/m)/ku)¥ and TC™ ((KU/m)/KU)Y are concentrated in odd degrees and we have

T_(2441) TC™ ((ku/m) /ku)” = Exty g (ﬁl’,}Hdg q-gﬁ(Z/m) /2, Z[B] [[ﬂ])

7T_(2*+1) TC™ ((KU/m)/KU) v = EXt%[[q—l}] (q—Hdg(Z/m)/Z, Z[[q - 1]]) [5i1] .
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Proof. According to Corollary 3.8 and Lemma 3.9, the spectrum TC™ ((ku/m)/ku)¥ admits a
complete exhaustive filtration with associated graded %2* (ﬁl;_Hdg q—&l\%(z /m)/z.)" s where now the
dual is taken in graded Z[5][t]-modules. It’ll be enough to show that this dual is concentrated
in homological degree —1 (which precisely accounts for the m%[[q_lﬂ[ﬁﬂ]—terms). Since Z[5][t]
is (53, t)-complete as a graded object, the same is true for any dual in graded Z[3][t]-modules,
and so it’ll be enough that

RHomy g1 (ﬁlg—Hdg q-dR(zm),z, Z[B] [[ﬂ]) /(B,t) ~ RHomy, (grfmg dR(z/m)/z Z)

is concentraded in homological degree —1. Since grﬁdg CTP\{(Z/m)/Z ~ YN A" Liz/my/z ~ Z/m,
the n'® graded piece of the right-hand side is precisely RHomgz(Z/m,Z), which is indeed
concentrated in homological degree —1. This finishes the proof for TC™ ((ku/m)/ku)".

The proof for TC™ ((KU/m)/KU)" is analogous, except that we need a different argument to
show that the dual (¢-Hdg(z/m)/z)" in Z[q—1]-modules is concentrated in homological degree —1.
By (g —1)-completeness, it’ll be enough to check the same for RHomz(¢-Hdg(z/m),z/(q¢—1),Z).
By [Wag25b, 3.8] we see that ¢-Hdg(z,/,,)/z/(¢—1) admits an exhaustive ascending filtration with
associated graded given by grfjy, dR(z/m)/z- It follows that RHomgz (¢-Hdgz/my/z/ (¢ — 1), Z)
admits a descending filtration with associated graded R@Z(grﬁdg dR(z/m)/z,Z)- This is
indeed concentrated in homological degree —1 as we’ve seen above, so we're done. O

This finishes step (b) in our plan from 3.3. We continue with step (c¢). Note that neither
pro-idempotence of “lim}, ¢ TC™ ((ku/m)/ku) nor the fact that its transition maps become
eventually trace-class are automatically preserved under passing to homotopy groups. The
problem is that 7, (—)—or really passing to the associated graded of the Whitehead filtration
T>«—is not a symmetric monoidal functor.

As we'll see, in our situation, passing to the associated graded of the double-speed Whitehead
filtration 79, behaves as if it were symmetric monoidal, which fixes all issues. Our starting
point is the following general fact, which is quite similar to Lemma 3.9 (and is also usually
formulated as a spectral sequence).

3.11. Lemma. — Let k be an even Eo-1ing spectrum, let t € mo.(k) be a homogeneous
element, and let M, N be even k-modules. Then the t-completed tensor product M ®, N admits
a complete exhaustive descending filtration with graded pieces

or* (M & N) ~ x2* (Wg*(M) &, ) m(N)) .
Here — ®71712*(k) — denotes the graded t-completed derived tensor product over moy (k).

Proof. The filtered spectrum 7>9,(M) ®y_,, (1) T>2«(N) defines a filtration on M ®; N. This
filtration is exhaustive, since colim: Fil(Sp) — Sp is symmetric monoidal, and complete, since
224 (M) ®r,, (k) T>2+(N) is a connective object in the double Postnikov ¢-structure (see the
proof of Lemma 3.9).

Now consider the t-adically completed tensor product 7so4(M) ®7’>2*(k) T>94(N), where t
in the filtration degree corresponding to its homotopical degree. This now defines a filtration
on M ®, N, which is clearly still complete. It is also still exhaustive. Indeed, for all n,
the cofibre of (729.(M) ®r_,, k) T>24(N))—n — M ® N is (2n + 1)-coconnective. Upon t-
adic completion, the coconnectivity can go down by at most 1, and so we see that the
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cofibre of (T2,(M) ®T>2*(k‘) Ts9x(N))_y — M ® N will still be 2n-coconnective. This ensures
exhaustiveness.

Passing to the associated graded is symmetric and commutes with ¢-adic completion (in
the filtered and graded setting, respectively). Moreover, the double shearing functor ¥2* is
E;-monoidal (even Eg, but we won’t need that). Hence

I'*(M ®k N) >~ ZQ*WQ*(M) ®22*7r2*(k) 22*71'2*(]\7) >~ 22* (FQ*(M) ®7I:2*(k) 7T2>|<(N)> . O

3.12. Corollary. — “lim;;, ¢ ﬁl;—Hdg q—cTP\{(Z/m)/Z and “lim}, ens ¢-HAg (7,1 /7 are idempotent
pro-algebras, respectively, in the derived co-categories of t-complete graded Z|[5][t]-modules and
of (¢ — 1)-complete Z[q — 1]-modules.

Proof./\Throughout the | proof, ® will denote a t-completed tensor product. We also put
fil* -dR, = fil]_yyqq ¢-dR(z/m)/z and A = “limp, o+ fil* ¢-dR,;, for short.

Since each fil* ¢-dR,, is a graded Z[B][t]-algebra, we get a unit map Z[S][t] — A and a
multiplication A @Ii[ﬁ] ] A — A such that the composition

A~ Z[B][t] @)Ii[ﬁ][[t]] A— A ®E[ﬁ][[t]] A— A

is the identity. For the other composition, let m1, ms € N* and consider the ¢-completed tensor
product

TC™ ((ku/my @i ku/ma)/ku) ~ TC™ ((ku/m1)/ku) ®kuh31 TC™ ((ku/mg)/ku) .

By Lemma 3.11, this has a complete exhaustive filtration with graded pieces given by
Y2# (1* q—cﬁ\%ml @Ii[ﬁ][[ﬂ] fil* q—Cﬁ\{mz). Observe that this graded completed tensor product is
concentrated in homological degrees [0, 1]. Indeed, this can be checked modulo (3,t). Then
fil* q—&f\{mi/(,ﬁ, t) ~ griag AR(z/m,)/z, is given by Z/m; in every graded degree for i = 1,2, and
Z/m1 ®% Z/ms is indeed concentrated in homological degrees [0, 1]. It follows that the filtration
on TC™((ku/p™ ®yy ku/p™?)/ku) must be the double speed Whitehad filtration 7>a..

By Corollary 2.30, TC™((ku/m? ®y, ku/m)/ku) — TC™ ((ku/m? Qy ku/m)/ku) factors
through the even spectrum TC™((ku/m)/ku). By passing to the associated graded of the
double speed Whitehead filtration, we see that

ﬁl* q—a]?{mS @%[IB] ﬂtﬂ ﬁl* q—&l?{m — ﬁl* q—(;ﬁ,m2 @%[ﬁ] [[t]] ﬁl* q—(ﬁ,m2

factors through fil* q—cﬁm. This finishes the proof that A = “lim;, -+ ﬁl;_Hdg q—&lsn(z /m)/z 18 an
idempotent pro-algebra.

The argument for “lim}, -+ g-Hdgz, /m) sz 1s analogous, except that we work with KU instead
of ku, and to show that ¢-Hdgz/, ),z @Z[q 14 Hdg(z/m,)/z 1s concentrated in homological
degrees [0, 1], we need a slightly different argument: First, we can reduce modulo (¢ — 1). The
conjugate filtration from [Wag25b, 3.8] gives an ascending filtration on q-Hdgz/m,)/z /(g—1)
for i = 1,2, whose graded pieces are copies of Z/m;. Moreover, ¢-Hdg(z,/,,,)/z/(q — 1) is an
Z/m-algebra, since g-Hdg(z, /., /z contains an element of the form m; /(¢ —1). Thus, abstractly,
q-Hdgz/m,y/2/(@ — 1) =~ @DyZ/m;. So we're done since Z/my ®% Z/my is concentrated in
homological degrees [0, 1]. O
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3.13. Corollary. — “limy, e fil} g, q—(ﬁ(z/m)/z and “limp, cn¢ g-Hdg(z/m) /2 are equivalent
to pro-objects with trace-class transition maps.

Proof. Throughout the proof, ® will denote a t-completed tensor product. Using Corol-
lary 2.30 and unravelling the proof of Lemma 2.23, we find that that for every high-powered m,
TC™ ((ku/m3)/ku) — TC™ ((ku/m)/ku) is trace-class in t-complete ku"S" -modules. Hence it
must be induced by a map

n: kuS — TC™ ((ku/m?)/ku)” ®kuh51 TC™ ((ku/m)/ku)

By Lemma 3.11 (applied to the shift ¥ TC™((ku/m?)/ku)¥ to get an even spectrum, then we
shift back afterwards), the right-hand side has a complete exhaustive filtration with graded
pieces (fil} yqq q—éf{(z/ms)/z)v ®Ii[5][t] fil} Hag q—&f\{(z/m)/z. As in the proof of Corollary 3.12,
one easily checks that this graded completed tensor product is concentrated in homological
degrees [—1,0]. It follows that the filtration must be given by 7>2,—1(—). Thus, by considering
T>2+—1(n) and then passing to associated gradeds, we obtain a morphism

ZIAE) — (615 s1ag 4-AR(z/mo)/2)” ®Fpsypey Ly wuag 4Rz /m) 2 -

which witnesses that the morphism ﬁl;_Hdg q—(TP\{(Z Jm3) /7, ﬁl;_Hdg q—(ﬂ?{(z/m) sz is indeed
trace-class, as desired.

The argument for ¢-Hdgz/m3)/7z — ¢-Hdgz/m)/z being trace-class is analogous, except
that we use KU instead of ku. Moreover, we need a different argument to show that
(¢-Hdg(z/m3)/2)" @)Ii[qq]] q-Hdg(z/m)/z 1s concentrated in homological degrees [—1,0]: First,
we can reduce modulo (¢ — 1). As we’ve seen in the proof of Corollary 3.12, on underlying
abelian groups we get an equivalence ¢-Hdgz/m)/z/(q¢ — 1) ~ @yZ/m. An analogous con-
clusion holds for ¢-Hdgz/,,3)/2/(¢ — 1). Thus, the tensor product modulo (¢ — 1) becomes
S Iy Z/m3 ®% @By Z/m, which is clearly concentrated in homological degrees [—1,0]. O

This finishes step 3.3(c) and we arrive at the result of our computation.

3.14. Theorem. — TC™ " (ku® Q/ku) and TC™ (KU ® Q/KU) are concentrated in even

degrees. Furthermore, their even homotopy groups are given as follows:

(a) o TCT (ku®Q/ku) = Af,, where A is obtained by killing the idempotent pro-graded
Z[B][t]-algebra “limy, ens fil5 g ¢-AR(z/m)z- In particular, there’s a short exact sequence

0 — Z[BII] — Ay — eolim? Excty 114 (ﬁl)t;fHdg g-dR z/m) 2, Z1 ] [[t]]) — 0,

and A, is an idempotent nuclear graded Z[5][t]-algebra.

(b) o TCT (KU ® Q/KU) = Agy[B*!], where Axy is obtained by killing the idempotent
pro-Z[q — 1]-algebra “limy, cns ¢-Hdg(z /1 /7 In particular, there’s a short ezact sequence

0 — Z[qg — 1] — Axy — “colim” Ext%[[qflﬂ (q—Hdg(Z/m)/Z, Z[q — 1]]) — 0,

me(N#)op

and Agu is an idempotent nuclear Z]q — 1]-algebra.
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Proof. We use the cofibre sequence of 3.3. To compute TC_’ref(ku ® Q/ku), we must study
the cofibres of TC™ ((ku/m)/ku)¥ — ku"*" for high-powered integers m € N¢. Put

fil* g-dR,;, := cofib (Z[ﬁ] [t] — fil} pag q_&f{(Z/m) /z) ,

TC,, = cofib (kuhS1 — TC™ ((ku/m)/ku)) .

Since ku"" and TC™ ((ku/m)/ku) are even spectra, the sequence of double speed Whitehead
filtrations T;g*(kuhsl) — 752, TC™((ku/m)/ku) — 752, TC,, is still a cofibre sequence in
filtered spectra. Applying the construction from the proof of Lemma 3.9, we get complete
exhaustive filtrations on the duals of ku™", TC™ ((ku/m)/ku), and TC,, in such a way that
they fit into a cofibre sequence fil*(TC;,)Y — Al* TC™((ku/m)/ku)" — fil*(ku"*")". After
passing to associated gradeds, we get a cofibre sequence of graded ¥2*Z[S][t]-modules

gr*(TC;,)" — 2 (£} 14, Q‘&E(Z/m)/Z)v — S*ZBI]Y

where ¥2*: Gr(Sp) — Gr(Sp) denotes the “double shearing” functor. It’s clear from the
construction that the morphism on the right must really be given by Y?*(—)¥ applied to
the unit map Z[B][t] — fil yq, q—&ﬁ(z/m)/z. It follows that gr*(TC,,)" ~ X2*(fil* ¢-dR,,)".
Observe that (fil* g-dR},)Y sits in homological degree —1. Indeed, this can be checked modulo
(B,t). Then fil* ¢-dR,,/(B,t) ~ cofib(Z — 2T 1dg dR(z/m)/z) is given by YZ in graded degree 0
and Z/m in every other graded degree, so it’s straightforward to see that its graded dual over
Z sits indeed in homological degree —1.

Thus, fil*(TC,,)¥ must be the double speed Whitehead filtration, (TC.,)" is concentrated in
odd degrees, and 2.1 ((TC,,)") = H_; (fil*(¢-dR;,,)") as a graded Z[3][t]-modules. Combining
this with Corollary 3.10, we see that the long exact homotopy sequence of the rotated cofibre
sequence (ku™ 1)" — %(TC,,)Y — X TC™ ((ku/m)/ku)" breaks up into a short exact sequence
of graded Z[B][t]-modules of the following form:

Since TC™™ (ku® Q/ku) ~ “colim,, ¢ (n#)yor (TC,,) by the cofibre sequence from 3.3, it follows
at once that TC™" (ku ® Q/ku) is concentrated in even degrees and that A} fits into the
desired short exact sequence. Furthermore, it’s clear from our considerations above that

(il pag -dR(z/my/z)” =~ 7" Extyap (ﬁlg—Hdg q-dR(z/m),z, Z[B] [[t]]) — Z[B][t] ,

induced by the short exact sequence, is given by dualising the canonical unit morphism
Z[B1[t] — i1} nag ¢-AR(z/m)/z- Then the underlying graded ind-Z[B][t]-module of Af must

o~

really be given by killing the pro-idempotent “lim;, ¢ ﬁl;—Hdg q-dRz/m)/z- Idempotence and
nuclearity of Aj follow from Lemma 2.14(b) and Corollary 3.13. Since idempotents admit
a unique E-algebra structure, it follows that the desired description of A} also holds as a
nuclear ind-Z[3][t]-algebra. This finishes the proof of (a).

The proof of (b) is analogous; the only difference is that we need a different argument why
cofib(Z]qg—1] — ¢-Hdgz/m)/z)" is concentrated in homological degree —1. This can be checked
modulo (¢ —1). We've seen in the proof of Corollary 3.12 that ¢-Hdg(z/p/z/(q — 1) is a Z/m-
algebra and, abstractly, ¢-Hdgz/m)/z/(q—1) =~ @y Z/m. We can choose this decomposition in
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such a way that one of those summands corresponds to the unit Z/m — ¢-Hdgz/mmy/z/(q — 1)
It follows that

cofib(Z — q-Hdg(z/m)/z/(q — 1) ~ <ZZG—) P Z/m> ~y'Zen! H Z|m
N~ {1} Nx{1}

is indeed concentrated in homological degree —1 and we’re done. O

§3.2. Explicit g-Hodge filtrations

In this subsection, we’ll give an explicit description of the ¢g-Hodge filtration ﬁl;—Hdg q-dRz/m)/z-
This will be used in §4 to prove Theorems 1.10 and 1.11.

By construction, it will be enough to describe the g-Hodge filtration in the case where m = p“
is a prime power. In this case, the filtration is obtained via base change from ¢-dRz, (2} jz2)/z,-
Using ¢-dR(z, (2} 00 /o) /2, = -AR(Z, (2} 0 j22) /2, {2} @D base change, we can further reduce
the problem to describing the filtration from [Wag25b, Construction 4.21] on the derived ¢-de
Rham complex

¢(z%) } "

4Rz, {2} /) 2,12} = Lpiz}]e = 1]]{ [Pl ) 1)'
p,q—

Let us denote this ring by ¢-D, for short and let Do = dR(z,(2}/20)/2,(z}- Then Dy is the
p-completed PD-envelope of (z%) C Z,{x} and ¢-Dya/(q — 1) > Dy The filtration fil} yq, ¢-Da
from [Wag25b, Construction 4.21] is, by definition, given as the (1-categorical) preimage of the
(v, ¢ — 1)-adic filtration on Da[1/p]ga,[g — 1]-

3.15. Lifts of divided powers. — Let v(—) := (—)?/p denote the divided power operation
and let 4" (=) denote its n-fold iteration. To get an explicit description of the filtration

fil} Hag ¢-Da, our goal is to find elements %”) (%) € ﬁlf]’izH dg 9-Da for all n > 0 such that the
following two conditions hold:

(a) We have ’Ny(gn)(;ca) =™ (2% mod (¢ —1).

(b) The image of %n) (x%) in Da[l/p]ﬁdgﬂq — 1] is contained in the ideal (z,q — 1)P".

Indeed, if we believe that filf 4, ¢-Da/(q — 1) = filfjg, Do, then such elements must exist.
Conversely, if such elements exist, then fil} 3, ¢-Da/(q — 1) — filjjq, Do must be surjective
and thus an isomorphism by [Wag25b, Lemma 4.26]. So filj 4, ¢-Do must be generated as
a (p,q — 1)-complete filtered g-D,-algebra by (¢ — 1) in filtration degree 1 and the elements

ﬁén)(xa) in filtration degree p" for all n > 0.

The following technical lemma shows existence of these lifts along with some structural
information about them, and we’ll even see an explicit recursive construction in the proof.
Moreover, all of this works for all & > 2 without any restrictions in the case p = 2.

3.16. Lemma. — For all primes p, there is a sequence (I'y)n>0 of polynomials in Zy{x}[q]
with the following properties:

(@) Ty =2 mod (¢ —1)P~! and T, € (zP,(q — 1)P~1)P
(b) T € ((¢'(x), By ()P, (@) " foralll <i<m—1.
() Tn€(¢"(x), Ppn(q))-

n—1
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(d) (Tn)* € [Ty pi(@)”" " - g-Dq for all a > 2.

@ js contained in the ideal (z,q — 1)P", and

IS
[T, @0y

is a lift of the n-fold iterated divided power v (x®) and contained in the (p")" step of the
q-Hodge filtration on q-D,,.

In particular, for all a > 2, (T'y,)

) () - € ﬁlfq’fHdg q-Dq,

Proof. We’ll do a proof by induction. For the base case of the induction, n = 0, let I'g := =.
All of the statements are trivial in this case.

For the induction step, we first want to construct the element I';,. For this, let P,, @, be
some polynomials in Z[q] such that p = P, (q)(q — 1)-De" ™ 4 Qn(q)®pn(q). Note that such
polynomials always exist, since ®,n(1) = p and ®pn(q) = (¢ — 1)(1’_1)7’"71 mod p, so

@y (q) = (g — 1)@
p

n—1

is a unit modulo (¢ — 1)®~YP""" Now define

Ty o= (Tno1)? + Po(q)(g = D760, 1) = ¢(Tn1) — Qn(q)®pn (q)8(Tr1).

Statement (a) follows trivially. For (b) and (c¢), by Lemma 3.17 below it’s enough to check that
p - [y, is contained in these ideals. We have

D Fn =D (Fn—l)p + Pn(Q)(q - 1)(p—1)p”*1 (¢(Fn—1> - (Fn—l)p)
=p - (Cn-1) = Qu(@) Py (q) (¢(Tn-1) — (Tn-1)?).

Now (I',—1)P and ¢(I',,—1) are contained in each one of the ideals from (b). Indeed, for (I',,—1)?,
this follows from statements (b) and (¢) of the induction hypothesis, and for ¢(I';,—1) this
follows similarly from (a) and (b). Therefore, the first of the two equations above shows that
p- Ty, is contained in each of the ideals from (b). Similarly, using statement (c) of the induction
hypothesis, we get ¢(I'n—1) € (¢™(x), Ppn(¢)) and so the second of the equations above shows
that p - '), is contained in this ideal as well. This finishes the induction step for (b) and (c).

It remains to show statement (d). By [BS19, Lemma 16.10], ¢-D,, is (p, ¢ — 1)-completely
flat over Zy[q — 1] and thus flat on the nose over Z[q|. Therefore

H Dy (Q)pn_l “q-Do = ﬂ (I)pi(Q)pn_l “q-Dq .
i=1 i=1
To show that (I'y)* € ‘sz‘(q)pnii -q-D,, for 1 < i < n—1, by the already proven statement (b),

n—1—1

it’s enough to show the same for any element in the ideal ((¢'(x), ®,i(q))?, @i (q)P~1)?
So consider a monomial of the form

(qb"(x)j@pi(q)k)efbpi <q)(P—1)m :

where j + k = p and £ +m = ap” =%, By construction, ¢(z)® becomes divisible by ®,(q) in
g-Dq and so ¢'(2)® € ®,:(q) - ¢-Dq. Hence ¢'(x)7* is divisible by @, (q) Lit/e] | Tt will therefore
be enough to show

y ‘
VaJ +k+(p—1)m=p" .
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This is straightforward: For £ = 0, the inequality follows from a(p—1) > p as a > 2. In general,
if we replace (j,k) by (j —1,k+1), the left-hand side changes by at least £ — [¢/a| —1; for £ > 1
and « > 2 this term is always nonnegative. Therefore we may assume j = p, k = 0, and we must
show |[pl/a + (p—1)m > p"~% If p = 2 and a = 2, this becomes the equality £+ m = 27~
and so the inequality is sharp in this case. If p > 3 or a > 3, we have (p — 1) — |p/a] =1 >0
and so by the same argument as before we may assume ¢ = ap” '~ m = 0. The the desired
inequality follows from a(p — 1) > p again.

A similar but easier argument shows that every element in (¢™(x), ®pn(q))“ becomes divisible
by ®,n(q) in g-D, and we have an inclusion of ideals (27, (¢ — 1)P~1)er" ™' C (22 ¢ — 1)"" in
Zy{r}[q]. This finishes the proof of (d) and shows (I',)* € (z%,q — 1)P". Hence %n) (z%) is
really contained in the (p™)*® step of the ¢-Hodge filtration and it lifts v (z®) by (a). O

3.17. Lemma. — If J C Z,{z}[q] is any of the ideals in Lemma 3.16(b) or (c), then
Zp{x}[q]/J is p-torsion free.

Proof. Consider the map v;: Zp{z}[q] — Z,{z}[q] given by the i-fold iterated Frobenius
@' Lp{xy — Zyp{a} and q — @i (q). If we replace ¢'(x) and ®,:(¢) in the definition of J by =
and ¢, respectively, we obtain an ideal Jy C Z,{z}[q] such that

Lpl{x}/)J = Lp{z}/Jo O, taylq)vs Loirtlal-

Now ¢ is flat by [BS19, Lemma 2.11] and ¢ + ®,,:(q) is finite free, as the polynomial ®,:(q) is
monic. So v; is flat and it suffices to show that Z,{x}[q]|/Jo is p-torsion free. But Z,{z}[q] is a

free module over Z, with basis given by monomials in x,§(z),6%(z), ... and g. By construction,
Jo is a free submodule on a subset of that basis. It follows that Zy{x}[q]/Jo is free over Z,,
hence p-torsion free. ]
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§4. Algebras of overconvergent functions

In this section we prove Theorems 1.10 and 1.11. In §§4.1-4.2 we’ll review Clausen’s and
Scholze’s approach to adic spaces via solid analytic rings [CS24, Lecture 10] and study algebras
of overconvergent functions as well as gradings in this setup. In §4.3, we’ll then combine this
with our explicit computation of the g-Hodge filtration on ¢-dRz/pe),z, from §3.2 to finish the
proof of Theorems 1.10 and 1.11.

§4.1. Adic spaces as analytic stacks

In the following, we’ll use the formalism of analytic stacks from [CS24]. For the convenience of
the reader, let us briefly recall the relevant notions.

4.1. Solid condensed spectra. — Let Cond(Sp) denote the oco-category of (light) condensed
spectra, that is, hypersheaves of spectra on the site of light profinite sets as defined by Clausen
and Scholze [CS24]. The evaluation at the point (—)(x): Cond(Sp) — Sp admits a fully faithful
symmetric monoidal left adjoint (—): Sp — Cond(Sp), sending a spectrum X to the discrete
condensed spectrum X.

One can develop a theory of solid condensed spectra along the lines of [CS24, Lectures 5-6].
Let Null := cofib(S[{oo}] — S[NU{oc}]) be the free condensed spectrum on a null sequence. Let
o: Null — Null be the endomorphism induced by the shift map (=) +1: NU {co} — N U {oo}.
Recall that a condensed spectrum M is called solid if

1 — o*: Homg(Null, M) — Homg(Null, M)

is an equivalence, where Homg denotes the internal Hom in Cond(Sp). We let Spg € Cond(Sp)
denote the full sub-oco-category of solid condensed spectra. Then Sp, is closed under all
limits and colimits. This implies that the inclusion Spy € Cond(Sp) admits a left adjoint
(—)": Cond(Sp) — Spa. It satisfies (M ® N)® ~ (M™® N)®, which allows us to endow Spg
with a symmetric monoidal structure, called the solid tensor product, via M @ N := (M ® N)".
This allows us to define the derived co-category of solid abelian groups as D(Zg) := Modz(Spy)-

4.2. Huber pairs a la Clausen—Scholze. — Recall that to any Huber pair (R, R") one
can associate an analytic ring (R, R")a in the sense of [CS24, Lecture 1] as follows: First
consider R as a condensed ring via its given topology. For f € R(x) and M € Modg(D(Za))
we say that M is f-solid if

1 — fo*: RHomy(Nullz, M) — RHomy (Nullz, M)

is an equivalence. Here Nullz := Null ® Z ~ cofib(Z[{co}] — Z[N U {c0}]) denotes the free
condensed abelian group on a nullsequence. The inclusion of the full sub-co-category of f-
solid R-modules admits a left adjoint (—)™, called f-solidification. The underlying animated
condensed ring of (R, R")g is then defined as

(R,R") = colim R/™-/m
{f1,... fr}CRT

where the colimit is taken over all finite subsets of RT, and D((R, R")a) C Modr(D(Za)) is
the full sub-co-category of solid condensed R-modules that are f-solid for all f € Rt C R(x).
In the following, we’ll always work with Huber pairs for which (R, RT)% is just R itself.
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The classical notion of affinoid open subsets fits naturally into this formalism. Suppose
we're given f1,..., fr € R(*) generating an open ideal as well as another element g € R(%),
so that U == {z € Spa(R, R") | | filzs-- - |frlz < |g|z # 0} defines a rational open subset. We
can define an analytic ring O(U,) as follows: The underlying animated condensed ring is the
solidification

O(U) — R[%] (fl/g).v"'»(fr/g).

and we let D(Ua) = D(O(Ua)) € Modpg1/1(D((R, R")a)) be the full sub-co-category spanned
by those R[1/g]-modules in D((R, R")a) that are also (f;/g)-solid for i = 1,...,r. If O(U)
is static and quasi-separated, it agrees with the Huber ring from the classical theory of adic
spaces. In practice, this will almost always be the case.

4.3. Adic spaces a la Clausen—Scholze. — Clausen and Scholze associate to any Tate(*!)

adic space X an analytic stack Xa — AnSpecZg. If X = Spa(R, RT) is Tate affinoid, we
simply put Xg := AnSpec(R, R")a. If U C Spa(R, R") is an open subset of a Tate affinoid
adic space, choose a cover V' :=[[;.; Vi — U by rational open subsets and form the Cech nerve
Ve = Co(V — X). Every V,, is a disjoint union of affinoid adic spaces, hence V,, 4 is already
defined. Then we can put Uy = colimp,jcacr Vi u- Finally, if X is an arbitrary Tate adic space,
choose a cover W = [[;.; W; — X by affinoids and form the Cech nerve W, = Co(W — X).
Each W, is a disjoint union of open subsets of Tate affinoid adic spaces, so Wy, a is already
defined, and we put Xg := colimp,jeacr Win,u-

It can be shown that these constructions are well-defined and independent of the choices
involved. We’ll omit the verification, but let us at least mention the crucial input.

4.4. Lemma. — Let (R, R") be a Huber pair and let Xq := AnSpec(R, R™)q be the associated
affine analytic stack.

(a) IfU,U" C Spa(R,R") are rational open subsets, then
AnSpec O(Un) X anspec(r, R+)a AnSpec O(Ug) =~ AnSpec O((UNU")a) -

(b) If R is Tate and U C Spa(R, R™) is a rational open subset, then j: Uy — Xga is an open
immersion of affine analytic stacks in the sense of [CS24, Lecture 16]. That is, j* admits
a fully faithful left adjoint j satisfying the projection formula.

(¢) If R is Tate and ], U; — Spa(R,R") is a cover by rational open subsets, then
[T, Ui — Xa is a !-cover of affine analytic stacks.

4.5. Remark. — The Tate condition in Lemma 4.4(b) and (c) is crucial and it is the reason
why we restrict to the Tate case when we describe adic spaces in terms of analytic stacks.
Without this assumption, (b) will be wrong. For example, if R is a discrete ring, any Zariski-open
also determines a rational open of Spa(R, R), but in this case j* almost never preserves limits,
so it can’t have a left adjoint ji.

Proof sketch of Lemma 4.4. Suppose U and U’ are given by |fi],...,|fr] < |g] # 0 and
If1]s- - 1f1 < |g'| # 0, respectively. Using the description of pushouts from [CS24, Lec-
ture 11], it’s clear that O(Uy) ®%R,R+). O(U)}) is the solidification of R[1/(gg’)] at the elements
fi/gand fi/g fori=1,...,r, j=1,...,s. But that’s precisely O((U N U')a), proving (a).

4-DTo avoid confusion with analytic stacks, we’ll call an adic space Tate rather than analytic if, locally, there
exists a topologically nilpotent unit. The restriction to Tate adic spaces makes sure that open immersions go to
open immersions (see Lemma 4.4 below); analytic stacks can be associated to any adic space.
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For (b), assume U is given by |fi|,...,|fr| < |g| # 0. Since R is assumed to be Tate,
the open ideal generated by fi,..., f, must be all of R. Hence g will aready be invertible in
R[Ty,...,T.]/(¢T; — fi | i=1,...,7) and this quotient is automatically a derived quotient as
well. It follows that the functor j*: D(Xa) — D(Ua) can also be written as

(T, TSR (T~ fi [ i= 1, 7).

By [CS24, Lecture 7], the functor (—)[T]™™ of adjoining a variable and then solidifiying it can
be explicitly described as RHomy (Z(T~1))/Z[T], —) and so j*(—) ~ RHompg(Q, —), where

(@z (T ) 2T S R) (6T~ i i = L),

It follows immediately that j* admits a left adjoint j(—) ~ Q ®%R Rt)a —° It remains to check
the projection formula

31(M) ®fg grye N = j1(M &) 7(N)) -

By the same argument as above, @ is already an R[1/g]-module and the functor j* is insensitive
to inverting g. Therefore, it’s enough to check the projection formula in the case where N
is an R[1/g]-module. When restricting to R[1/g]-modules, j* is just given by successively
killing the idempotent algebras Z((T; ")) ®LF T To /g R[1/g] for i =1,...,r. Now for killing
an idempotent it’s completely formal to see that the left adjoint indeed satisfies the projection
formula. This finishes the proof of (b).

To show (c), since we already know that each j;: U; ¢ — Xa is an open immersion, we can
use the criterion from [CS24, Lecture 18] to verify that [[; U;w — Xa is indeed a !-cover.
That is, if A; := cofib(j; 1O(U;) — R), we need to show A; ®%R7R+)_ . -®I(4R,R+)_ A, ~ 0. Using
[Hub94, Lemma 2.6] and an inductive argument as in [CS19, Lemma 10.3], this can be reduced
to the special case wheren =2 and Uy = {x € X | 1 < |f|.}, U ={z € X | |f|. < 1} for some
f € R. This is now a straightforward calculation. O

4.6. Remark. — Let U C X be an open inclusion of Tate adic spaces and let j: Ug — Xg
be the corresponding map of analytic stacks. In the following, if its clear that we’re working
in D(Xa), we often abuse notation and write Oy instead of j,Op, for the pushforward of the
structure sheaf of Ug. We also use — ®I@X. Oy, to denote the functor j.j*: D(Xa) — D(Xa).

Let us point out that — ®I(‘9X_ Ou, is not just the tensor product with Oy in the symmetric
monoidal co-category D(Xg). We can already see the difference if X = Spa(R, Rt) and U C X
is a rational open given by |fi|,...,|fr| < |g| # 0: In this case,

— ®I(49X. OU. ~ (_ ®I(_19X. OU)(fl/g)-f"'v(fT‘/g)- .

In particular, even though Oy ®%9X Ouv. ~ Oy (see Lemma 4.4(a) and Lemma 4.11(b) below),
it’s rarely true that Oy is idempotent in D(Xg).

Thus, there’s a priori no reason to expect that sheaves of overconvergent functions O+
would be idempotent. In the following, we’ll investigate why idempotence is satisfied in the
situation of Theorems 1.10 and 1.11. Let’s start by introducing a notion of open immersions
for analytic stacks that need not be affine.
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4.7. Open immersions of analytic stacks. — We call a map of analytic stacks j: U — X
a naive open immersion if j is a l-able monomorphism and j* ~ j'. Since j is a monomorphism,
U xx U ~U. Combining this with proper base change, we get j*ji >~ idp) and so jy is fully
faithful. Then the right adjoint j, of j* must be fully faithful as well.

Using the projection formula and j*j; ~ idp(y), we see that 7Oy — Ox exhibits Oy as
an idempotent coalgebra in D(X). Then cofib(jiOy — Ox) must be an idempotent algebra. In
this way, we can associate to any naive open immersion an idempotent algebra in D(X ), which
we call the complementary idempotent determined by U and denote Ox. 7. It’s straightforward
to check that the forgetful functor i,: Modop, ,(D(X)) — D(X), which is fully faithful by
idempotence, fits into a recollement

Modoy_, (D(X)) —*— D(X) —L— D(U)

and so 7.Oy is obtained from Ox by killing the idempotent algebra Ox.y. As long as it’s
clear that we're working in D(X), we often abuse notation and just write Oy instead of j,Ox.

4.8. Remark. — Every open immersion of affine analytic stacks in the sense of [CS24,
Lecture 16] is also a naive open immersion.

4.9. Remark. — If A € D(X) is an idempotent algebra, we can define an analytic substack
Uy C X by declaring that a map f: Y — X factors through Uy if and only if f*: D(X) — D(Y)
factors through the localisation D(X)/ Mod4(D(X)), or equivalently, if and only if f*(A) ~ 0.
However, it’s not true that the constructions U — Ox.y and A — Uy are inverses; it’s not
even clear why D(U,4) would coincide with D(X)/ Moda(D(X)).

It’s not obvious what conditions should be put on U and A to make these constructions
mutually inverse (moreover, whatever the condition, it should be satisfied for open immersions
of affine analytic stacks). This explains why we call the notion from 4.7 naive: An honest
open immersion of analytic stacks should be a naive open immersion for which the idempotent
algebra Ox .y meets the putative condition. In the following, we’ll work with the naive notion,
since it is enough for our purposes.

4.10. Lemma. — Let U' — U — X be naive open immersions of analytic stacks. Suppose
that U contains the closure of U in the sense that there exists another naive open immersion
j:V — X such that U' xx V =~ 0 and Ox.v ®p, Ox-v ~ 0. Then

Ou ®p, Our ~ Oy .

Moreover, the map Oy — Oy is trace-class in D(X) and factors through Ox .y .

Proof. The condition U’ x x V ~ () implies that O is in the kernel of the pullback functor
j*:D(X) — D(V) and so Oy is an algebra over the idempotent A := Ox.y by 4.7. We
also know that Oy is obtained from Ox by killing the idempotent B := Ox.y. Hence
Oy ~ cofib(BY — Ox). Since BY is a B-module, Oy is an A-module, and A ® B ~ 0, we get
BY ®%X Oy ~ 0, hence indeed Oy ®I(“9X Opyr ~ Oy

Since the double dual BYV is still a B-module, the same argument shows (’)[V] ®I@X Oy ~ Oy
Hence Oy — Oy is trace-class, with classifier given by the unit Ox — Opy:. We've already
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seen that Oy is an A-algebra. The condition A ® B ~ 0 also implies RHom y (B, A) ~ 0, since
RHom y (B, A) is both an A-module and a B-module. It follows that A is contained in the
image of j,: D(U) — D(X) and hence A is an Op-algebra. This shows that Oy — Oy factors
through A. O

4.11. Lemma. — Let X be a Tate adic space with associated analytic stack Xa — AnSpec Zg,
and let U, U’ C X be open subsets.

(a) The map j: Ug — Xa is a naive open immersion of analytic stacks. Moreover, an arbitary
map f:Y — Xa of analytic stacks factors through Uy if and only if f*(Ox.y) ~ 0.

(b) We have Ug X xga Up ~ (UNU")a. In particular, Oy ®I(9X_ Ouy =~ Oyry and vice versa if
U and U’ are exchanged.

(¢) IfU' C U, then Uy contains the closure of UL in the sense of Lemma 4.10.

Proof sketch. Let’s start with (b). In the case where U and U’ are affinoid, Ug X x,Ug ~ (UNU")a
follows essentially by the construction of Xg in 4.3, because we can choose both U and U’ to be
part of an affinoid cover of X (and to prove that said construction is independent of the choice
of cover, we need Lemma 4.4(a)). To show the general case, just cover U and U’ by affinoid
open subsets.

Let’s show (a) next. Let’s first consider the case where X = Spa(R, R™) is affinoid and
U C X is a rational open. We've already seen in Lemma 4.4(b) that j: Uy — Xg is a naive
open immersion. Suppose f:Y — Xg is a map of analytic stacks such that f*(Ox.y) ~ 0. If
Y ~ AnSpec S is affine, then the map of analytic rings (R, R")a — S factors through O(Us)
if and only if f*: D((R, R")a) — D(S) factors through D(Us). Since f*(Ox.y) ~ 0, this is
satisfied in our case. This proves the claim in the case where Y ~ AnSpecS is affine. In
particular, Ug X x, AnSpec S ~ AnSpec S. For the general case, write Y as a colimit of affines
to see Ug Xx, Y =Y. Then f: Y — Xy clearly factors through Us.

Now let U and X be arbitrary. Proving that j: Ug — Xjg is a naive open immersion formally
reduces to the special case considered above; we omit the argument. Now let f: Y — Xg
be a map of analytic stacks such that f*(Ox.y) ~ 0. Whether f factors through U can
be checked locally on Xu. By (b), if Spa(R,R*) — X is an affinoid open supset, then
Us X xg AnSpec(R, R")a ~ (UNSpa(R, R"))a, so we can reduce to the case where X is affinoid.
As above, we may also assume that ¥ ~ AnSpec S is affine. Let [[,.; U; — U be a cover by
rational open subsets. Then

Oy~ colim_ (Ox-u, ®b,, -+ @by, Oxur, ) -
where the colimit is taken over all finite subsets of I. Since the colimit is filtered and f*(Ox )
is detected by the single condition 1 = 0, there exists a finite subset {i1,...,i,} C I such
that already f*(Ox.u,,) Q- Q% f*(Ox.v,,) ~ 0 in D(S). By the criterion from [CS24,
Lecture 18], it follows that H;;l Ui, m X xq AnSpec.S — AnSpec S is a !-cover. We may therefore
replace S by the constituents of this cover, and for each of them it’s clear that they factor
through Ug. This finishes the proof of (a).

Part (c) is a formal consequence: If V := X ~\ U’, then Vg — Xg is a naive open immersion
by (a), Us X x4 Va =~ 0 follows from (b), and if A := Ox. v ®I@X_ Ox.v, then it’s formal to
see that Mod4(D(Xa)) is the kernel of the pullback functor D(Xu) — D(Ua) Xp(wnv)e) P(Va)-
But this functor is an equivalence as U UV = X, and so A ~ 0. O
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We can finally show the desired criterion for idempotence.

4.12. Definition. — If X is a Tate adic space and Z C X is a closed subset, the overconvergent
neighbourhood of Z is the analytic stack

Z1 = lim Uy,
YA

where the limit is taken over all open neighbourhoods of Z. If it’s clear that we’re working
in D(Xa), we often abuse notation and denote by O+ = colimy>z Oy € D(Xa) the sheaf of
overconvergent functions on Z. This is in favorable situations, but not always, the pushforward
of the structure sheaf of Z; see Theorem 4.13(b) below.

4.13. Theorem. — Let X be a quasi-compact quasi-separated Tate adic space and let Z C X
be a closed subset such that for all points z € Z and all generalisations 2’ ~ z also 2’ € Z.

(a) The ind-object
cl?lguzn Ou € Ind D(Xa)

is idempotent, nuclear, and obtained by killing the pro-idempotent “lim} o, Ow, where
the limit is taken over all open subsets W C X such that ZN'W = 0. In particular,
Oyt € D(Xa) is idempotent and nuclear.

(b) If for every affinoid open j: Spa(R,R") — X the pullback j*(O4+) € D((R,R")a) is
connective™?) | then pushforward along ZT — Xa induces a symmetric monoidal equivalence
D(Z1) ~ Modo . (D(Xa)). In particular, in this case O, is really the pushforward of the
structure sheaf of Z1.

To prove Theorem 4.13, we send a lemma in advance.

4.14. Lemma. — Let X be a spectral space and let Y, Z C X be closed subsets such that
for z € Z and y € Y there never exists a common generalisation z « x ~» y (in particular
ZNY =0). Then there exist open neighbourhoods U 2 Z and V DY such that U NV = ().

Proof. Fix z € Z. By [Stacks, Tag 0906], y € Y there exist open neighbourhoods U, > z and
Vy 3 y such that Uy, NV, = (). By compactness of Y, there exist finitely many yi,...,y, € Y
such that Y C V, ==V, U---UV,,. Let also U, :== Uy, N---U,,, so that U, NV, = 0. By
compactness of Z, there exist finitely many z1,..., 2, € Zsuch that Z CU :=U, U---UU,,,.
Putting V .=V, N-.-NV,,_, we have constructed U and V with the required properties. [

Proof of Theorem 4.13. First observe that Lemma 4.14 can be applied to any closed subset
Y C X such that ZNY = (. Indeed, for any common generalisation z « z ~ y, we would
have x € Z, as Z is closed under generalisations, but then y € Z, as Z is also closed under
specialisations.

It follows that in the ind-object “colim;~, Oy we can restrict to open neighbouhoods of
the form U = X ~ W for some open subset W such that Z NW = (). Indeed, for arbitrary U,
apply Lemma 4.14 to Z and X \ U to get an open neighbourhood W 2 (X ~\ U) such that
ZNW ={. Then (X ~ W) C U, as desired.

42 Following discussions with Ben Antieau and Peter Scholze, we believe that connectivity can be replaced by the
much weaker condition that Mod ;o ,+)(D(R)) is left-complete, using an adaptation of [MM24, Proposition 2.16].
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Let Ow = Ox (xw) € D(Xa) be the complementary idempotent determined by the open
subset X ~ W. Since each Oy is obtained by killing the idempotent Ox. 7, our observation
implies that “colim;’]2 7 Ou is obtained by killing the pro-idempotent “lim7 5, Ow. For all
such W, applying Lemma 4.14 to Z and W provides another open neighbourhood W/ > W
such that still ZNW’ = (. By Lemma 4.10 and Lemma 4.11(c), Oy — Oy is trace-class and
factors through Oyy. It follows that “Nm7 7o Ow ~ “lim7, 5 Oy and that the condition of
Lemma 2.14 is satisfied, so that “colim;,-, Oy is indeed idempotent and nuclear in Ind D(X4).
Since colim: Ind D(Xg) — D(Xa) preserves idempotents and nuclear objects, it follows that
Oyt € D(Xa) is idempotent and nuclear as well. This finishes the proof of (a).

For (b), note that Z' is clearly compatible with base change and so is O, by (a) and
Lemma 2.14(c). We may therefore assume that X = Spa(R, R") is affinoid and Oy is
connective. Then O+ can be turned into an analytic ring using the induced analytic ring
structure from (R, R )g. It follows that a map f: AnSpec S — AnSpec(R, R )q factors through
O+ if and only if S Zﬁ(OZT). By Lemma 2.14(b), we have O: ®I(“R7R+)_ Ow =~ 0 for all
open W such that ZNW = (. Thus S ~ f*(O,+) implies f*(Ow) ~ 0 for all such W. By
sandwiching open and closed subsets, we get f*(Ox. ) ~ 0 for all open neighbourhoods U 2 Z.
By Lemma 4.11(a), this implies that f factors through ZT ~ limy>y Us.

Conversely, if f factors through Zf, then f*(Ox.y) =~ 0 for all U and thus f*(Ow) ~ 0
for all W as above, using the same sandwiching argument. It follows that S is a module
over the nuclear idempotent ind-algebra obtained by killing “lim}, w_, f*(Ow) in D(S). By
Lemma 2.14(c), this is “colim;;~, f*(Opy). Then S is also a module over the honest colimit
colimyz f*(Ov) ~ f*(Oyt), proving S =~ f*(Oyt).

In conclusion, this argument shows that ZT ~ AnSpec O is an affine analytic stack and so
D(Z1) ~ Modo , (D((R, R™)a)) follows by construction, as we’ve put the induced analytic ring
structure on Q. O

This implies idempotence and nuclearity in the situation of Theorem 1.10.

4.15. Corollary. — Let X = SpaZ,Jq— 1]~ {p =0,q9 =1} and let Z C X be the union of
the closed subsets Spa(F,(q — 1)),Fplq — 1) and Spa(Qp(¢pn), Zp[Cpr]) for alln > 0.

(a) Z is closed and closed under generalisations.

(b) For m,r,s > 1 such that (p — 1)p" > s, let Wy, s € X be the rational open subset
determined by |p"| < |¢?" — 1] #0, |(¢ — 1)®| < |p| # 0. Then Oy is idempotent, nuclear,
and the colimit of the idempotent nuclear ind-algebra obtained by killing the idempotent

”

Wl
pro-algebra hmnﬂ,,s OWn,m-

Proof. Let x € X ~\ Z. Then |p[; # 0, hence |(¢ — 1)®| < |p|, for s > 0. Choose such an s.
Moreover, |¢”" — 1|, # 0 holds for all n > 0. Choose n such that (p — 1)p" > s and choose
r > 0 such that [p”|, < |¢”" — 1|;. Then x € Wh.r.s. If we can show ZNW,, . s =0, both (a)
and (b) will follow. Indeed, this will imply that X ~\ Z is open and closed under specialisations,
proving (a). Moreover, X\Z = J,, . ; Wp,r s and so for any open subset W such that ZNW =)
we must have Wy, . s 2 W for sufficiently large n, r, and s by quasi-compactness of W. Hence (b)
follows from Theorem 4.13(a). '

To show ZNW,, ;s =0, let w € Wy, ;. 5. Since (p—1)p™ > s, we get |(q— 1)(”*1)7’2_1 lw < |[Plw
for all i > n and so [®,i(q)|w = |pw, Where ®,i(g) denotes the (p)™ cyclotomic polynomial.
Thus 0 < |p""|, < |¢”" — 1|y for i > n. In particular, w ¢ Z. Even better: If U; denotes
the rational open subset determined by |¢?" — 1| < [p"*~"*1| # 0 and V denotes the rational
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open subset determined by |p| < |(g — 1)**1| # 0, then the open set Uisn Ui UV contains Z
and doesn’t intersect W), ;. s, so indeed Z N W, ;. s = 0. ]

§4.2. Graded adic spaces

To deduce idempotence and nuclearity in the situation of Theorem 1.11, let us describe how to
encode gradings in terms of actions of the analytic stack

U(1)g = AnSpec Z[u*']a,

where Z[u*!]q is obtained from Z[u*!] by solidifying both u and u~'. Equivalently, Z[u*!]q is
the analytic ring associated to the discrete Huber pair (Z[u*!], Z[u*!]).

4.16. Graded adic spaces via U(1)g-actions. — Classically, the grading on Z[f, t] in which
3 and t receive degree 2 and —2, respectively, is encoded by an action of G, := Spec Z[u*]
on SpecZ[B,t]. The action map SpecZ[f,t] x G,, — SpecZ[3,t] corresponds to the ring map
A: Z[B,t] — Z[B,t] ®z Z[ut'] given by A(B) = u?B, A(t) == u%t.

In our situation, we're forced to work with the adic spectrum X* := Spa Z[8, t](Ap’ " instead.
But in the map A we can’t just replace Z[f, t] by its (p, t)-completion, since the tensor product
78, t](Ap,t) ®z Z[u*!'] won’t be (p,t)-complete anymore.

To fix this, consider 7: U(1)s — AnSpecZg and let — ®IZ_ Z[u*1]a denote the pullback
7*: D(Za) — D(U(1)a). By [CS24, Lecture 7], the process of adjoining a variable and then
solidifying it preserves limits, and so

Z[B? t]z\pﬂ:) ®%- Z[uil]l = Z[B? tv uil]z\p,t) :

Thus, if we put X} := AnSpec(Z[3, t]?p}t), Z[8, t](Am))., we do get an action X} x U(1)g — X
simply by (p,t)-completing the map A above. Here and in the following, all products are taken
in the oco-category AnStky, of analytic stacks over Zg. We let U(1)g: A°? — AnStky, denote
the simplicial analytic stack corresponding to the underlying E;-structure of the E,.-group
object U(1)a, and we let X} x U(1)g: A°? — AnStky, denote the simplicial analytic stack
corresponding to the U(1)g-action on X%. Finally, let

BU(1)a == [2]061%ng(1)2 and X5/U(1)g:= [g?elggpfﬁan);l.

4.17. Graded objects as sheaves on BU(1)y. — Let Gy, 7, = G;;, x AnSpecZq. By
adapting the usual proof, it’s straightforward to show that
D(BG,74) ~ GrD(Za)

is the oo-category of graded solid condensed abelian groups. Since we have a map of analytic
stacks ¢: BU(1)a — BGy;,, 7., wWe get a pullback functor ¢*: GrD(Zs) — D(BU(1)a). In this
way, we can associate to any graded solid condensed Z-module a quasi-coherent sheaf on BU(1)g.

In fact, it can be shown that ¢* defines a fully faithful embedding Gr D(Za) — D(BU(1)a).
We thank Peter Scholze for pointing out the following lemma (any errors are our own):

4.18. Lemma. — There exists an equivalence of co-categories
Modyy, 7 D(Za) — D(BU(1)a) -

Under this equivalence, the image of a graded object M* € GrD(Za) is sent to D, c; My, with
component-wise action of the ring [, o, Z; or in other words, a comodule over Z[ut1] is sent

to itself, regarded as a module over Homy (Z[u*'],Z) = I],cz Z-
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4.19. Corollary. — The functor c¢*: Gr D(Za) — D(BU(1)a) is fully faithful.

Proof. 1t’s enough to show that the functor Gr D(Za) — Modyy _, 7 D(Za) from Lemma 4.18
is fully faithful. This can be reduced to the case of shifts (both in graded and homotopical
direction) of the compact generator Nullz, ~ [[Z, i.e. the case of graded object of the form
YiNullg, (j) for some integers i and j, which is straightforward to check. O

Proof sketch of Lemma 4.18. First observe that for any injective map «a: [m] — [n] in the
simplex category A, the associated map «: U(1)g — U(1)g" is l-able and the pullback functor
o*: D(U(1)I) — D(U(1)2) agrees up to shift with o'. It follows that o* admits a left adjoint
oy, which agrees up to shift with ay. The limit D(BU(1)a) = limp,jca D(U(1)g) can therefore
be rewritten as a simplicial colimit in Pr" along the aj functors. The inclusion of D(Zg) into
the colimit defines a functor which we’ll denote 7y: D(Za) — D(BU(1)a); its right adjoint is
given by pullback along the canonical map 7n: AnSpec Zg — BU(1),.

This colimit diagram lies, in fact, in Prl. Indeed, each D(U(1)2) is compactly generated
and each oy preserves compact objects, since its right adjoint o* admits a further right adjoint
a. It follows that D(BU(1)a) is compactly generated, and the images of Nully, ®Ii_ Ouyp for
all n form a set of compact generators. In fact, n,Nullz, is already a compact generator, since
each U(1)g — BU(1)q factors through n: AnSpec Zg — BU(1)a. Next observe that

2 ~ H O(n) and mnNullg, ~ H H O(n),

nez N neZ

where O(n) € D(BU(1)g) denotes the image of the graded Z-module Z(n). Indeed, to construct
a map, mZ — [[,ez O(n) it’s enough to provide a map Z — n*([],ez O(n)) ~ [1,ez Z; we
take the diagonal map. To check that this induces an equivalence, we check that it becomes an
equivalence in each D(U(1)y). This is a straightforward calculation, using the fact that the ay
functors satisfy base change (which follows from proper base change, as they agree with ay up
to shift). In the same way one shows the formula for 7,Nullz,.

Now mZ ~ [],cz O(n) admits a [],, ., Z-module structure in an apparent way, hence it
induces a functor Modpy _ D(Z) — D(BU(1)a). Extending D(Za)-linearly, we obtain a functor

Nodry,,,, D(Za) = (Mod, ., D(Z) ®o(z) D(Za) — P(BU(L)

as desired. It is essentially surjective, since the compact generator [],., Nullz, is mapped
to the compact generator n;Nullz,. To check fully faithfulness, we only need to verify that
HomHneZZ(HneZ Nullz,, [T,ez Nullz,) — Hompgy(1),) (1;Nullz,, nyNullz, ) is an equivalence.
By adjunction, we may rewrite the right-hand side as Hompz)(Nullz,, n*n;Nullz, ) and then
the claim is clear from n*n,Nullz, ~ [],cz Nullz,. d

In the next two lemmas, we'll deduce that the graded Z,[3][t]-modules fil} y4, q—&l\%(z /p*)/Zp
can be regarded as sheaves on X} /U(1)a without loss of information.

4.20. Lemma. — Let us abusingly denote by Ox« y(1)y € D(BU(1)a) the pushforward of
the structure sheaf of X%/U(1)a. Then pushforward along X%/U(1)e — BU(1)a induces a
symmetric monoidal equivalence of co-categories

D(Xa/U(1)u) =~ Modog, ), (P(BU(1)a)) -
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Proof. The same argument as in 4.16 shows X5 x U(1)Z ~ AnSpec(Z[3, t,ui?, ... ,u#]?p,t))..
By definition,
D(BU(1)a) ~ [n]glAD(U(l)’;) and D(X5/U(1)a) ~ [h]glAD(Y: x U(1)a)

where the cosimplicial limits are taken along the pullback functors. Observe that the pushforward
functors my: D(XJE x U(1)2) — D(U(1)2) commute with these pullbacks. Indeed, if we would
take the limit along the !-pullbacks, this would follow from proper base change (by passing to
right adjoints). Since Z — Z[u*!] is smooth of relative dimension 1 and the Kihler differential
module Q%[uﬂ]/z = Z[u*'] du is free of rank 1, we get ' ~ ¥~17* by [CS19, Theorem 11.6],
and so commutativity for the =-pullbacks follows.

Therefore Ok /uy(1), € P(BU(1)a) is given by the degree-wise pushforwards of the structure
sheaves O y(1)g, that is, by Z[B, t,uit,. . ut] € D(U()R) for all [n] € A. In every

»md(p,t)
degree, the pushforward induces an equivalence

D(XixU1)F) = Modzm’tulﬂ’“qﬁl]& ) (DUM)D) -

Using this observation, D(X}/U(1)a) =~ Modogy ), (P(BU(1)a)) is completely formal. [

4.21. Lemma. — Let Zp[[][t] € Gr'D(Za) denote the graded (p,t)-completion of the discrete
graded ring Z[B3,t] and equip Modg, 514 (Gr D(Z.))(Ap H with the (p,t)-completed graded solid
tensor product. Then c* induces a fully faithful lax symmetric monoidal functor

A

Modz, (g (Gr D(Za)) ,,

— Modo?*/u(l)_ (D(BU(I).)) )

which is symmetric monoidal when restricted to the full sub-co-category spanned by those objects

in Modg, (114 (Gr D(Z.))(Ap’t) that are uniformly bounded below in every graded degree.*)

Proof. To construct the desired functor, we compose ¢* with (p,t)-completion to obtain

A

" (=),
MOde[ﬁ]ﬂt]] (Gr D(Z.)) —_— MOdc* (Zp[B11t]) (D(BU(l).)) & MOdOY*/U(l). (D(BU(l).)) .

The functor ¢* is symmetric monoidal and (—)(An .
composition is lax symmetric monoidal. Moreover, it is symmetric monoidal when restricted to
graded Z,[B][t]-modules that are uniformly bounded below in every graded degree. Indeed, the
image of such objects in Modog, ), (P(BU(1)a)) > limp,jen D(Xi x U(1)2) will be bounded
below and (p,t)-complete in every cosimplicial degree, because the pullback functors along
which the limit is taken preserve bounded below and (p, t)-complete objects (the latter because
they preserve limits; see the argument in 4.16). So we can reduce to the fact that the solid
tensor product in D(X{ x U(1)2) preserves bounded below (p,t)-complete objects.

Clearly (—)(Ap 5 © c¢* factors through Modg, [ (Gr D(Z.))(Ap »- The resulting functor

) is lax symmetric monoidal. Hence the

Modz, (31 (Gt D(Za))(,, 5y — Modog . (P(BU(L)a))

is symmetric monoidal on uniformly bounded below objects. Fully faithfulness can be checked
modulo (p, 1), so it’ll be enough to check that Modp, 3(Gr D(Za)) — Modxr,[)) (P(BU(1)a))
is fully faithful, which follows from Corollary 4.19. O

(4-3)By contrast, the graded solid tensor product on Gr D(Za) does not preserve p-complete objects, not even if
they’re uniformly bounded below, because being p-complete is not preserved under infinite direct sums.
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4.22. Lemma. — Let X* C X* be the subset SpaZ[8, t] o) ~{p=0,8t =0}. Then X* is
a Tate adic space and its associated analytic stack X} can be written as the following pushout:

AnSpec< (5, t] [pﬁt] 7[5, ](pt> — AnSpec(Z[ﬁ,t]E\m)[ﬁ] Z[B, ]p,t)>

J E |

AnSpeC(Z[ﬂ,t](Am[ 1. Z[B, ](p7 ) Xz

Moreover, the U(1)a-action on X} restricts to an action on X}. Finally, if we abusingly
denote by Oxxy(1)y € D(BU(1)w) the pushforward of the structure sheaf of Xg/U(1)a, then
pushforward along X} /U(1)a — BU(1)a induces a symmetric monoidal equivalence

D(X3/U(1)a) =~ Modo,, . (D(BU(L)a)) .

Proof. By 4.3, Xg is glued together from rational open subsets of X*. For example, one can
take Uy = {x € X* | |Bt|x < |plo # 0} and Uy = {x € X* | |p|, < |Bt|x # 0} and then

X;k ~ ULI I_l(UlmU2)l U2’..

To show the desired pushout, it’s enough that Y; g := AnSpec(Z[S, t] (Apyt)[l/p], Z[B, 1] (Apyt)). and
Y2 w = AnSpec(Z| 5, ]A t)[l/(ﬁt)] 7B, t]Ap »)u form a l-cover after pullback to Uy, and Us,a.
This is clear, as Y7 a XX* Uiw>~Uin and similarly Y u XX Usm~Usu.

To see that the U( )m-action on X restricts to an action on XJ, just observe that p and St
are homogeneous elements. The pushout above implies that the pushforward Oxx € D(Zg) of
the structure sheaf of X} is given by

OX* >~ [B’ ]pt)[ ] [ﬁ t](p t)[pﬁt] [6 t](p7 [é]u

the pullback being taken in the derived sense. Now D(XJ x U(1)g) ~ MOde*xUmg (D(U)D))

holds for all [n] € A, since the same is true for Y, u, Y2 u, and Y7 g X xz Y2,u. This finally implies
D(Xa/U(1)a) = Modo,, .y, (P(BU(1)a)), as desired. O

We can finally show idempotence and nuclearity in the situation of Theorem 1.11.

4.23. Corollary. — Let Z* C X* be union of the closed subsets {p = 0} and {[p"]xu(t) = 0}
for all n > 0, where [p™|iku(t) = ((1 + Bt)P" — 1)/B denotes the p"-series of the formal group
law of ku.

(a) Z* is closed and closed under generalisations. Moreover, the U(1)a-action on Xg restricts
to an action on the overconvergent neighbourhood Z*1 of Z*.

(b) For m,r,s > 1 such that (p — 1)p" > s, let Wi, C X* be the rational open subset
determined by [p"| < [[p"Jiu(t)] # 0, [(62)°] < [p| # 0. Then Ogx.t/y)e € D(Xa/U(1)n)
is idempotent, nuclear, and the colimit of the ind-algebra obtained by killing the idempotent

pro-algebra “limy, . Oy s/UL)m-

Proof. The proof of Corollary 4.15 can be carried over to show that Z* N W;’.‘L rs = 0 and
X*\NZ7* = Unm s Wi s- Hence Z* is closed and closed under generalisations. Moreover the

U(1)g-equivariant open subsets X* ~\ W;‘; r.s are coinitial among all open neighbourhoods of Z*,
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because for an arbitrary U O Z*, the complement X* \ U is quasi-compact and thus contained
in some Wy, .. Since the W = are U(1)a-equivariant, as they’re defined by homogeneous
elements, we see that Z*1 acquires a U(1)gq-action. This finishes the proof of (a).

For part (b), Theorem 4.13 shows that Oys+ is the colimit of the idempotent nuclear
ind-algebra obtained by killing “lim; . ; Oy . Since 75T x U(1)2 ~ limyss 7« (UF x U(1)a),
where the limit is taken over all U(l).-equi\}ariant open neighbourhoods, and since killing
pro-idempotents is compatible with base change in the nuclear case by Lemma 2.14(c), we get
that O zs.1,y(1)z s similarly given by killing “limp . ; Oy L uyz in D(Xa x U(1)g). Now let
A € D(Xg/U(1)a) be the colimit of the ind-algebra given by killing “limy . i Oyx = /y(1),- Then
Lemma 4.10 shows that all sufficiently large transition maps in this pro-object are trace-class
again. Hence A is idempotent, nuclear, and the base change result from Lemma 2.14(c) shows
that the pullbacks of A to Xg x U(1)g agree with O« t,y(1)p for all [n] € A. This implies

Ozxt/u(1)e = A, as both of the maps

Oz*,f/Uu). - OZ*vT/U(l)- ®I€)x:</u<1). A4

become equivalences after pullback to XZ x U(1)Z for all [n] € A. O

§4.3. Proof of Theorems 1.10 and 1.11

In this final subsection, we finish the proof of our main Theorems 1.10 and 1.11, thus providing
a completely explicit description of the homotopy groups of

IOl @ Qi) and T KU ©.Q/KU;).

By Example 2.31 and Lemma 3.2, these objects are obtained from (ku?,)hs " and (KUQ)"S .

respectively, by killing the idempotent pro-algebras(*4

“}li;nz” TC™ ((ku/p*)/ku) and “(l)éi)n%” TC™ ((KU/p*)/KU) .

The arguments from §3.1, particularly Corollaries 3.12, 3.13, and the proof of Theorem 3.14,
show that TC™™f is concentrated in even degrees in both cases, and the even homotopy groups
are given by

max TCT™ (ku) @ Q/ku)) = Af, . mox TCT™ (KU) ® Q/KUp) = Ay ],

where Al”;mp is obtained by killing the idempotent pro-algebra “limj, ﬁl;_Hdg q—(ﬁ\{(z /p%)/Zp
in graded (p,t)-complete Z,[5][t]-modules and Aky,, is obtained by killing the idempotent
pro-algebra “lim} -, ¢-Hdgz/pe)/z, in (p,q — 1)-complete Zy[gq — 1]-modules. Moreover, we
already know that Aj, p and Ay, are idempotent nuclear ind-objects.

Our goal is to identify Aiu,p and Aky , with the structure sheaves of the analytic stacks

Z%1/U(1)a and ZT, respectively (see Corollaries 4.15 and 4.23). To this end, let us first discuss
how to transport Ay, p and Axuy,p into the solid condensed world.

“49In the case p = 2, the pro-systems need to be indexed by a even and > 4, but we’ll ignore this since it
makes no difference
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4.24. Nuclear modules a la Efimov and a la Clausen—Scholze. — Let R be a ring
and I C R a finitely generated homogeneous ideal. Efimov defines an co-category of nuclear
R;-modules, which (along many equivalent characterisations) can be described as

Nuc(R;) ~ Nuc Ind(ﬁ[(R));

see [Efi25, Corollary 4.4] (also recall that NucInd(—) is set-theoretically ok thanks to Re-
mark 2.5). Let ]/%17. = (RI, RI) be the analytic ring associated to the Huber pair (RI, RI)
(see 4.2). Then we can also consider the oo-category Nuc(D (RL.)) of nuclear RL.—modules.(4 5)
Efimov [Efi25, Corollary 7.6] constructs a fully faithful strongly continuous symmetric monoidal
functor

Nuc D(EL.) — Nuc(Ry),

which is an equivalence on bounded objects.

4.25. Aku,p and Al";u’p as sheaves on analytic stacks. — Applying Efimov’s result
above for R = Z[q] and I = (p,q — 1), we see that the bounded object Aky, is in the
essential image of Nuc(D(Zp[q — 1]a)). Its preimage can be explicitly described: As We
can regard each ¢-Hdgz/pe) /7, as a (p,q — 1)-complete*9) solid condensed Zplq — 1]-module
by (p,q — 1)-completing the associated discrete condensed abelian group. The pro-algebra
“limy -, ¢-Hdg(z /) /7, 1s still idempotent in ProD(Z,[q — 1]a) and has eventually trace-class
transition maps. Thus, by killing it, we get an idempotent nuclear algebra in Ind D(Zp[q — 1]a).
Its colimit is the preimage of Aky j.

In a similar way, via Lemma 4.21, we can regard “lim}, ﬁl;,Hdg q—aﬁ(z /p)/Z, @S an idem-
potent pro-algebra in Modoxs ;) (D (BU( )w)). By killing it and taking the colimit of the result
idempotent nuclear ind-algebra, we can regard Ak, p as an object in Nuc Modogx */U(1)m (D(BU(1)a))

The following lemma shows that Aj,  and AKU,p are already sheaves on X} /U(1)g and Xg,
where we put X* := X* \ {p =0,8t =0} and X := SpaZ,[q— 1] ~ {p = 0,q = 1} as before.

4.26. Lemma. — Aﬁup vanishes after (p, B)-completion and after (p,t)-completion. Axu p

vanishes after (p,q — 1)-completion. In particular, Af, » and Axu p are already contained in the

Jull sub-0o-categories D(Xg /U(1)a) =~ Modo . i, (Yj(BU(l).)) and D(Xa) ~ Modo (D(Za)).

Proof. By Nakayama’s lemma it’s enough to show A}

fup/ (s B) =~ 0and AL /(p,t) ~ 0. Since
Axu,[B%] is a Af, p-algebra, this will also show Axu,/(p,q —1) ~ 0. Since Af, /t is
concentrated in nonnegative graded degrees, it is automatically 5—complete, so it’s already

enough to show Af, /(p, 8) ~ 0. Now ku — ku/(p, ) ~ F) is a map of E-ring spectra, and

it’s clear from Example 2.31 and Lemma 3.2 that TC™™(— ® Q/—) satisfies base change along
Eoo-maps. So TC™* (ku® Q/ku)/(p, ) ~ TC™*((F, ® Q/F,) ~ 0

It follows that (A}, p)(Ap sty = ~ (. Using the pullback square from Lemma 4.22, we get

% ~ A¥ L
Aup = Akup ®OY;/U(1). Ox*/u(1)a

and so Ay, p 1s indeed a Ox#ju(1)e-module. The argument for Aky,, is analogous. O

(451 fact, for any Huber pair (R;, R") the nuclear objects Nuc(D((R;, R )a)) will be independent of the
choice of RT. See [AM24, Example 3.34] for example.

(4-6) Observe that q-Hdgz/pe /2, 18 automatically p-complete, since it is (¢ — 1)-complete and contains an element
of the form p®/(q — 1) by construction.
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2

To finish the proof of Theorems 1.10 and 1.11, we analyse the pro-systems “lim; ,. ; Ow,, . |
and “lmy . Ops (1), from Corollaries 4.15 and 4.23 and show that they are pro-isomorphic

to the pro-systems from Theorem 3.14(b) and (a), respectively.

4.27. Lemma. — For every fired o > 2 and all sufficiently large n, r, s, there exist maps

Ows,./oa — flias 4-AR /)2, Oy () Oxcx /U1

/U(1)m

O, — ¢ Hdgzp0) 2, O, g1 Ox
in D(XE/U(1)a) and D(Xa), respectively.

Proof. By construction, the g-de Rham complex g-dR(z/p)/z, contains elements of the form
' (p(p™)/®p(q)) = p*/®,i+1(q) for all i > 0, and we have p® € ﬁl(;Hdg q-dR(z/pe)/z,- When
we regard fil} jjq, ¢-dR(z/pe)/z, as a graded Z,[S][t]-module, this precisely means that p® is
divisible by ¢. Hence we have elements of the form
Y 9(Y)  ¢"(p?)

( —_
p . i
D@~ € By(q) Bp(q) € Mg TRz,

n+l)a

for all n > 0. Similarly, there exist elements of the form (5t)" /p in ﬁl;—Hdg q—(Tﬁ(Z /p)/Zp
for sufficiently large N. Indeed, the ring ¢-dRz/pe/z, is (p, ®,(g))-complete and contains an
element of the form p®/®,(q). Applying the nilpotence criterion from [BCM20, Proposition 2.5],
we see that ®,(q) is nilpotent in Fil:’;_Hdg q—&f{(z /py/z,/P- Then (g — 1)P~! must be nilpotent
as well, and so (¢ — 1) must be divisible by p in fil} prag q—(ﬁ\{(z /py/z, for N> 0.

In particular, as soon as we invert St in ﬁl;_Hdg q—(ﬁ\{(z /p)/Zp /p, we see that p will be
invertible as well, and so

* T L * T
A1 tag 4-AR(z/pe) /2, ®O Oxx/u(ye = fil nag ARz pe) /2, [ 5] -

Xa/Uu()n
Moreover, as soon as p is invertible, [p™]x,(t) will be invertible for all n > 0. Choosing s > N,
we see that filj 4, ¢-dR(z/pe)/z, contains an element of the form (5¢)®/p which is topologically
nilpotent, hence automatically solid. Moreover, for (p — 1)p™ > s and r > (n + 1), we get an
element of the form p"/[p"]ku(t), which is again topologically nilpotent and thus solid. Thus,
for such n, r, and s, a map Owx 1), — fil} Hag ¢-dR(z/p) )z, [1/p] exists. The argument in
the ¢g-Hodge case is analogous. O

4.28. Remark. — As a consequence of [Wag25b, Theorem 3.11], q—Hdg(Z/pa)/Zp/(qpn -1)
is an algebra over the p-typical Witt vectors W,n(Z/p®). Since this ring is p**"-torsion, we
already have elements of the form p®+"/(¢?" — 1) in q-Hdg(z/pe)/z, for all n = 0.

4.29. Lemma. — For all fixed n, r, s such that (p —1)p™ > s and all sufficiently large o > 2,
there exist canonical maps

fil} g ¢-AR(z/pe /2, ©6

XE/U(n Oxx/u(ye — Owi,../U(1)a »

q_Hdg(Z/po‘)/Zp ®%p[[q_1}]. Ox — Ow,,,.,

in D(XE/U(1)a) and D(Xa), respectively.
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Proof. Let q-Dy = q-dR(z, (2} /22)/2,{«} @S in §3.2 and let ﬁl’(;,Hdg q—ﬁa denote its completed
g-Hodge filtration. It follows from 3.15 that ﬁl;ﬁHdg q-D,, is generated as a (p,t)-complete
graded Z,[B][t]-algebra by lifts of the iterated divided powers (%) (z®) sitting in filtration

degree 2p?. Thanks to Lemma 3.16, we know that these lifts can be chosen to be of the form
(LTa)"
tr* H?:1 (I)pi (Q)pd_i

for I'y € (2P, (q — 1)p_1)pd71. The extra t*" in the denominator accomodates for the fact that
this element must sit in degree 2p?. Note that the denominators all become invertible in
OW;",T,S JU()w> but that’s not enough to obtain the desired map: We must send the generators
to solid elements, to ensure that the map extends over the (p,t)-completion.

By construction, (¢ —1)*/p and p"/[p"]xu(t) are solid. In particular, p"/(t®,i(q)) is solid
foralli =1,...,n. For i > n, we have (p — 1)p'~! > s by assumption. Hence (q — 1)(p*1)pi_1/p
is topologically nilpotent in Oyyx 1y, It follows that ®,(¢) = p(1 + w), where w is
topologically nilpotent, and so p"/®,:(q) is solid in OWT’{‘,T,S /U(1)e for @ > n. Therefore the
clements p* /(t®,(q)) are solid for all i > 1.

By choosing « large enough, we can ensure that for every monomial 2P (q — 1)(7’*1)3' in the
ideal (27, (¢ — 1)P=1)*" ™" we have pi > 2rp? or (p — 1)j > sp?. Now (T'y)* is a Zp{x}|q]-linear
combination of such terms. It follows that the d-ring map Z,{z} — Z, sending x +— p can really
be extended to a map fil}, 4, ¢-Do — Ows, . /u(1)a ©f graded solid condensed Zp[S][t]-algebras.
Via (p,t)-completed base change along Z,{r} — Z, and extension of scalars to Ox+ y(1),, this
yields the desired map

fil} 1ag 4R z/p0)/2, @6 Ox*/u)e — Ows ., . /U(1)a

% /UL)m
The argument in the g-Hodge case is analogous. O

Proof of Theorems 1.10 and 1.11. By Lemma 4.26 and Lemma 2.14(c), we see that Aiup is
the colimit of the idempotent nuclear ind-algebra given by killing the pro-idempotent

“liny” Al gy 4-dR(z/p0) /2, O Ot /u(1)a

Xa/U(L)n
in D(XZ/U(1)a). By Lemmas 4.27 and 4.29, we see that this pro-system is equivalent to
the pro-system “lim Ows, . /u(1)e> Which proves Aﬁu’p ~ Ozx,i/u(1),- The argument for

7

n,r,s
Axyu,p ~ Oyt is completely analogous. O
4.30. Remark. — An obvious adaptation of Theorem 3.14 shows that Ay, and A, »

are connective. Therefore the condition from Theorem 4.13(b) is satisfied and so O, and
O+t /u(1)g are really the pushforwards of the respective structure sheaves.
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