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Abstract. — In this article, we’ll introduce a “q-variant” of Witt vectors and
de Rham–Witt complexes. This variant is closely related to the Habiro ring of a
number field constructed by Garoufalidis, Scholze, Wheeler, and Zagier rGSWZ24s,
to q-Hodge cohomology, and to THH(−/ku). While most of these connections will
only be explored in forthcoming work rWag25a; Wag25bs, the goal of this article is
to provide the necessary technical foundation.
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§1. Introduction

§1. Introduction
In p-adic geometry, one often encounters the ring of (p-typical) Witt vectors W (k), where k
is an Fp-algebra. This ring comes equipped with two natural endomorphisms: A Frobenius
Fp : W (k) ! W (k) and a Verschiebung Vp : W (k) ! W (k). These satisfy the well-known
relations Fp ◦ Vp = p = Vp ◦ Fp.

The p-typical Witt vector ring W (k) has a global analogue, given by the ring of big Witt
vectors. This ring still admits Frobenii Fp and Verschiebungen Vp for all primes p, but the
commutativity of Fp and Vp is lost. The idea that we’ll explore in this paper is that upon
introducing an auxiliary variable q, one can force Fp and Vp to commute “up to q-twist”, without
losing any information.

1.1. q-Witt vectors. — Let us now explain this idea in more detail. Fix a positive integer
m, a commutative ring R, and let Wm(R) denote the ring of big Witt vectors of R with respect
to the truncation set Tm := tdivisors of mu. Here the terminology is taken from rHes15, §1s;
we’ll review it in 2.6. If d is a divisor of m, then the rings Wm(R) and Wd(R) are related
via a Frobenius Fm/d : Wm(R) ! Wd(R) and a Verschiebung Vm/d : Wd(R) ! Wm(R). The
Frobenius Fm/d is a morphism of rings, whereas the Verschiebung Vm/d is only a morphism of
abelian groups. These morphisms satisfy

Fm/d ◦ Vm/d = m/d ;

however, there is no equally nice formula for the composition Vm/d ◦ Fm/d. It can be described
as multiplication by the element Vm/d(1); still, this element is not very explicit. But we can
make it explicit as follows. Let (q9Wm(R))m∈N be the initial system of Zrqs-algebras equipped
with the following structure:
(a) For all m ∈ N, a Zrqs-algebra map Wm(R)rqs/(qm − 1) ! q9Wm(R).
(b) For all divisors d | m, a Zrqs-algebra morphism Fm/d : Wm ! Wd and a Zrqs-module

morphism Vm/d : Wd ! Wm. These must be compatible with the usual Frobenii and
Verschiebungen on ordinary Witt vectors and satisfy

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = rm/dsqd :=
qm − 1

qd − 1
.

It’ll be shown in Lemma 2.9 that such an initial system does indeed exist and that q9Wm(R) is
given by an explicit quotient of Wm(R)rqs/(qm − 1). We call q9Wm(R) the ring of m-truncated
big q-Witt vectors over R.

1.2. Remark. — Despite the name, q9Wm(R) is not a q-deformation of Wm(R). Indeed,
in q9Wm(R)/(q − 1) the condition Vm/d ◦ Fm/d = m/d is enforced. In fact, if (Wm(R))m∈N
denotes the universal quotient of (Wm(R))m∈N such that Frobenius and Verschiebung commute,
then it’s straightforward to check q9Wm(R)/(q − 1) „= Wm(R), so q9Wm(R) is a q-deformation
of Wm(R) instead.

There’s also a clash of terminology with a construction of Andre Chatzistamatiou. In
unpublished work, he introduces q-Witt vectors and q-de Rham–Witt complexes of Λ-rings and
uses them to obtain a partial result towards coordinate-independence of the q-de Rham complex
(see 1.4 and Theorem 1.5 below). In particular, he was able to construct a homotopy equivalence
q9Ω˚

ZrT s/Z,□1
» q9Ω˚

ZrT s/Z,□2
, where □1 is the identical framing and □2 : ZrT s ! ZrT s is the

framing that maps T 7! T − 1 .
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In constrast to our constructions, Chatzistamatiou’s q-Witt vectors and q-de Rham–Witt
complexes are honest q-deformations of their classical counterparts. The author doesn’t know
whether there is a connection between the constructions in this paper and Chatzistamatiou’s.

q-Witt vectors have a number of nice properties. First of all, it can be shown that the
canonical map Wm(R) ! q9Wm(R) is always injective (Proposition 2.28), so we really don’t
lose any information by enforcing Vm/d ◦Fm/d = rm/dsqd . Second, formulas often become easier
than for ordinary Witt vectors. For example, q9Wm(Z) „= Zrqs/(qm − 1) couldn’t be simpler
(Corollary 2.37). Third, it turns out that most constructions with and properties of ordinary
Witt vectors have analogues for q-Witt vectors, as we’ll see throughout §§2–3.

1.3. A theory without restrictions. — The only real exception is that the restriction maps
for ordinary Witt vectors do not extend to maps Resm/d : q9Wm(R) ! q9Wd(R). In particular,
we can’t define a big q-Witt ring q9W(R) := limm∈N,Res q9Wm(R). It is then perhaps a little
surprising that the classical theory of de Rham–Witt complexes, as developed by Illusie rIll79s

(building on earlier work of Bloch, Deligne, and Lubkin) for Fp-algebras and by Langer–Zink
rLZ04s in an arbitrary relative setting, should have an analogue for q-Witt vectors. Nevertheless,
it works, as we’ll demonstrate in §3. What this really shows is that the restrictions weren’t
actually necessary to set up the classical theory: You can take the universal property from
rLZ04s and delete all restrictions from it—this will still give you the same truncated relative
de Rham–Witt complexes. The restrictions were only used a posteriori to combine all the
truncated complexes into one single complex by taking the limit.

Nevertheless, the lack of restrictions can be annoying. But there seems to be at least some
use in considering the limit limm∈N, F q9Wm(R) along the Frobenius maps; see rWag25bs.

We’ve made a point why the study of q-Witt vectors and q-de Rham–Witt complexes can be
of independent interest, but the real reason we’re interested in them is that they do appear in
nature.(1.1) For one, they can be used to construct the generalised Habiro rings of Garoufalidis
and Zagier rGSWZ24s. We won’t discuss this here (although the name Habiro ring will appear
again and be defined below), but refer to the forthcoming paper rWag25bs instead. What
we will discuss is the connection between q-de Rham–Witt complexes and q-Hodge complexes.
Before we introduce the latter, let’s briefly review the q-de Rham complex.

1.4. q-de Rham complexes. — Jackson rJac10s defined the q-derivative of a function f(T )
via the formula

q9∂f(T ) :=
f(qT )− f(T )

qT − T
.

For example, if f(T ) = Tm for some integer m ⩾ 0, then q9∂f(T ) = rmsqT
m−1, where

rmsq = 1 + q + · · · + qm−1 denotes Gauß’s q-analogue of m. Given some base ring A, for a
polynomial ring in several variables ArT1, . . . , Tns, one can consider partial q-derivatives q9∂i
as well as a q-gradient q9∇ :=

∑d
i=1 q9∂i dTi : ArT1, . . . , Tn, qs ! Ω1

ArT1,...,Tns/Arqs; furthermore,
these can be organised into a q-de Rham complex. This was first done by Aomoto rAom90s.

Unfortunately, the q-derivative does not interact well with coordinate transformations and so
there’s no way to make Aomoto’s q-de Rham complex independent of the choice of coordinates.
An insight how to fix this came from Scholze rSch17s: First, he observed that after completion
at (q − 1), the q-de Rham complex can be defined in more general situations. A framed smooth

(1.1)In fact, the definition was guessed from a computation of H0(q9Hdg˚
R,□/(q

m − 1)); see Theorem 1.7 below.
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A-algebra is a pair (R,□), where R is smooth over A and □ : ArT1, . . . , Tns ! R is an étale
map from a polynomial ring; we’ll often call □ an étale framing and think of it as a choice of
coordinates on SpecR. Using the infinitesimal lifting properties of étale morphisms, one can
show that the q-gradient for ArT1, . . . , Tns extends to a map q9∇ : RJq− 1K ! Ω1

R/AJq− 1K.(1.2)

The precise construction will be recalled in 4.7. One can then form the q-de Rham complex of
(R,□)

q9Ω˚
R/A,□ :=

´

RJq − 1K q9∇
−−! Ω1

R/AJq − 1K q9∇
−−! · · · q9∇

−−! ΩnR/AJq − 1K
¯

.

One immediately checks q9Ω˚
R/A,□/(q − 1) „= Ω˚

R/A, so we get a q-deformation of the de Rham
complex. As a complex, q9Ω˚

R/A,□ suffers from the same coordinate-dependence as before.
However, Scholze observed that if A is a Λ-ring, then q9Ω˚

R/A,□ is coordinate-independent as an
object in the derived category D(AJq − 1K)! More precisely, Bhatt and Scholze were able to
show the following theorem:

1.5. Theorem (see rBS19, §16s for the essential case). — If A is equipped with a Λ-structure
and Z-torsion free, then there exists a functor

q9Ω−/A : SmA −! CAlg
´

D̂(q−1)

`

AJq − 1K
˘

¯

from the category of smooth A-algebras into the ∞-category of (q − 1)-complete E∞-algebras
over AJq − 1K, such that q9Ω−/A/(q − 1) » Ω−/A agrees with the de Rham complex functor
and for every framed smooth Z-algebra (R,□), the underlying object of q9ΩR/A in the derived
∞-category of AJq − 1K can be represented by the complex q9Ω˚

R/A,□.

1.6. q-Hodge complexes. — Given a framed smooth A-algebra (R,□) as above, one can
also form the q-Hodge complex

q9Hdg˚
R/A,□ :=

ˆ

RJq − 1K
(q−1) q9∇
−−−−−−! Ω1

R/AJq − 1K
(q−1) q9∇
−−−−−−! · · · (q−1) q9∇

−−−−−−! ΩnR/AJq − 1K
˙

by multiplying all differentials in q9Ω˚
R/A,□ with (q− 1). It’s not immediately obvious why that

would be an interesting construction—or even a sensible one—so let’s give some motivation
why one should look at the q-Hodge complex.

The q-Hodge complex was first introduced by Pridham rPri19s(1.3) who used it to obtain a
partial result towards Theorem 1.5. Many results in Pridham’s paper are proved for the q-Hodge
complex first and then deduced for the q-de Rham complex via q9Ω˚

R/A,□
„= η(q−1) q9Hdg

˚
R/A,□,

where η(q−1) denotes the Berthelot–Ogus décalage functor (see rBO78s or rStacks, Tag 0F7Ns).
This is a first hint that q9Hdg˚

R,□ might be a more fundamental object. A second hint comes
from Waßmuth’s paper rWaß19s: He introduced a version of the prismatic site in characteristic 0
and showed that the cohomology of that site can be computed by a similar complex as above.
A third piece of motivation is the following question:
(⊠) Can the q-de Rham complex, or some modification of it, be descended along H ! ZJq−1K?

Here H denotes the Habiro ring

H := lim
m∈N

Zrqs
^

(qm−1) .

(1.2)Here it’s crucial that we complete at (q − 1) or the lifting wouldn’t work.
(1.3)While Pridham used the notation “q̂DR”, we’ve opted for the perhaps more descriptive “q9Hdg”.
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Question (⊠) was raised by Peter Scholze in the hope that a cohomology theory with values
in H-modules could explain the results of rGSWZ24s; in particular, the mysterious regulator
map from K-theory to line bundles over extensions of H should arise via a realisation map
from motivic cohomology to this hypothetical cohomology theory. Question (⊠) is also very
natural in view of the general principle that whenever one has a deformation at q = 1, one
should evaluate it at other roots of unity as well. By design, H consists precisely of those power
series in ZJq − 1K that can be evaluated at arbitrary roots of unity.(1.4)

Now the q-Hodge complex is a more natural candidate to descend to the Habiro ring than the
q-de Rham complex itself. One intuitive reason goes as follows: As we’ve seen, the q-derivative
satisfies q9∂(Tm) = rmsqT

m−1. But a theory that descends to the Habiro ring should “treat all
roots of unity equally” and thus send Tm 7! (qm − 1)Tm−1 instead. This leads immediately to
the definition of q9Hdg˚

R/A,□. A more mathematical reason to expect such a descent for the
q-Hodge complex is Theorem 4.27 below, which we’ll restate here in slightly less precise and
less general form:

1.7. Theorem (see Theorem 4.27). — For all framed smooth Z-algebras (R,□) and all
m ∈ N, there is an isomorphism of commutative differential-graded Zrqs-algebras

`

q9WmΩ
˚
R/Z

˘^

(q−1)

„=−! H˚
`

q9Hdg˚
R/Z,□/(q

m − 1)
˘

.

Here q9WmΩ
˚
R/Z denotes the q-de Rham–Witt complex from Definition 3.13, (−)^(q−1) refers to

degree-wise (q − 1)-completion, and we turn the cohomology H˚(q9Hdg˚
R/Z,□/(q

m − 1)) into a
commutative differential-graded Zrqs-algebra via the Bockstein differential.

1.8. Remark. — The fact that H˚(q9Hdg˚
R/Z,□/(q

m−1)) is canonically the (q−1)-completion
of something else is precisely what we would expect to see if q9Hdg˚

R/Z,□ were really the (q− 1)-
completion of an object over the Habiro ring!

Theorem 1.7 also nicely illustrates why the q-Hodge complex is more likely to descend
to the Habiro ring than the q-de Rham complex. For the q-de Rham complex, there’s a
similar isomorphism H˚(q9Ω˚

R/Z,□/Φp(q))
„= (Ω˚

R/Z bZ Zrζps)
^
p for all primes p, see rSch17,

Proposition 3.4s. More generally, Molokov rMol22s relates H˚(q9Ω˚
R/Z,□/rpαsq) to Wpα−1Ω˚

R/Z
for all α ⩾ 1. But note the shift in the index! This shift prevents us from, say, relating
H˚(q9Ω˚

R/Z,□/rmsq) to WmΩ
˚
R/Z, and so it’s entirely unclear whether these p-typical results for

varying p can be combined into a global result like Theorem 1.7.

Theorem 1.7 also looks promising regarding the question whether q9Hdg˚
R/Z,□ can be made

coordinate-independent (at least in the derived category). But something strange goes wrong:

1.9. Theorem (see Theorem 5.1). — There is no functor q9Hdg−/Z : SmZ ! D̂(q−1)(ZJq−1K)
that also makes the identifications from Theorem 1.7 functorial.

Theorem 1.9 is a very unwelcome surprise. It doesn’t rule out that the construction
q9Hdg˚

R/Z,□ can somehow be made functorial, but we consider this unlikely.(1.5) In forthcoming
work rWag25bs, we’ll explain a partial fix, showing that a functorial derived q-Hodge complex

(1.4)In fact, H can be viewed as as the ring of those power series in ZJq − 1K that can also be Taylor-expanded
around each root of unity.

(1.5)And it would be hard to say anything about such a functor, since we can’t access its cohomology via
Theorem 1.7.
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exists on a certain full subcategory of all commutative rings and satisfies a derived version
of Theorem 1.7. Furthermore, we’ll relate this functor to THH(−/ku) and show that it does
descend to the Habiro ring, thus giving at least a partial affirmative answer to question (⊠).

1.10. Notation and conventions. — As usual, we’ll write rmsq = 1 + q + · · ·+ qm−1 for
the Gaußian q-analogue of an integer m ⩾ 0. More generally, if d is any positive divisor of m,
we’ll use the notation

rm/dsqd := 1 + qd + (qd)2 · · ·+ (qd)m/d−1 =
qm − 1

qd − 1
.

We also let Φm(q) denote the mth cyclotomic polynomial. So rpsq = Φp(q) and we’ll sometimes
switch back and forth between these two notations.

Since we’re mostly working with cochain complexes, we’ll use cohomological indexing. We’ll
also use some ∞-categoric language. If R is a ring, the derived ∞-category of R will be denoted
D(R). If M˚ is a cochain complex, then its image in D(R) will usually be denoted M . We’ll
usually say that a sequence K ! L!M in D(R) is a fibre/cofibre sequence instead of writing
that K ! L!M ! Kr1s is a distinguished triangle in the ordinary derived category D(R).
Following Clausen–Scholze, we’ll say that an object M ∈ D(R) is static (“un-animated”) if M
is concentrated in degree 0. Furthermore, we often use the derived quotient notation: If f ∈ R
and M ∈ D(R),

M/Lf := cofibpf : M !Mq

denotes the cofibre taken in D(R), or equivalently the cone in D(R), of the multiplication map
f : M !M . For multiple elements f1, . . . , fr ∈ R, we let

M/L(f1, . . . , fr) :=
`

. . . (M/Lf1)/
L . . .

˘

/Lfr .

In the case where M is static, so that it can be regarded as an R-module, the object
M/L(f1, . . . , fr) ∈ D(R) has an explicit representative given by the homological Koszul complex
Kos˚(M, (f1, . . . , fr)), which, according to our indexing conventions, we regard as a cochain
complex in nonpositive degrees.

Finally, the notion of derived I-completeness for finitely generated ideals I ⊆ R will be
ubiquitous throughout the text. If I = (f) is principal, we say that M ∈ D(R) is derived
f-complete if M » limn⩾1M/Lfn, where the limit is taken in the derived ∞-category (so it
corresponds to a derived limit in the ordinary derived category). In general, M is called derived
I-complete if it is derived f -complete for all f ∈ I, or equivalently, for all f in a generating
set of I, see rStacks, Tag 091Qs. We’ll use the following (abuse of) notation: If M ∈ D(R),
we denote its derived I-completion by M̂I (or (−)^I for larger expressions). If, instead, M˚

is a cochain complex, then M̂˚
I denotes its degree-wise underived I-completion. However,

whenever we use the latter notation in this paper, it will always be true that M̂˚
I represents

the derived I-completion of M (which we’ll usually have to justify), so the notation will never
be inconsistent! We also denote by D̂I(R) the full sub-∞-category of D(R) spanned by the
derived I-complete objects.

A complex M ∈ D(R) is called I-completely flat if M bL
R R/I is discrete and flat over R/I.

A ring morphism R! S is called I-completely smooth if S is derived I-complete, I-completely
flat over R, and S bL

R R/I is smooth over R/I. In the same way, the terms I-completely
étale and I-completely ind-smooth/étale are defined. It can be shown that S is I-completely
smooth/étale over R if and only if it is the derived I-completion of a smooth/étale R-algebra,
see rBS19, footnote 6 on page 11s.
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1.11. Organisation of this paper. — The main ideas in this paper are already contained
in the author’s master thesis rWag21s, but here we develop the theory of q-Witt vectors and
q-de Rham–Witt complexes in a much more systematic way, in more generality, and most
importantly, without the (q−1)-completeness assumption. This results in quite some additional
work, but also in a much simpler proof of Theorem 1.7, and the additional generality will be
needed in rWag25bs.

In §2, we’ll introduce q-Witt vectors and prove many technical results about them that will
be needed later on. If you’re mainly interested in the application to q-Hodge complexes, you
may want read up to Proposition 2.15 and then skip the rest of §2.2 as well as §2.3. In §3,
we’ll introduce q-de Rham–Witt complexes. The most work in that section goes into proving
that q-de Rham–Witt complexes carry a natural choice of Frobenius operators. Again, this
is technical, and if you’re willing to take it on faith, you can skip §3.3. In §4, we’ll study
q-de Rham–Witt complexes for smooth Z-algebras. This includes a proof of Theorem 1.7, but
we’ll also show that they are degree-wise p-torsion free. Finally, in §5 we’ll give a proof of
Theorem 1.9.

1.12. Acknowledgements. — Due to the unsatisfying nature of Theorem 1.9, I’ve long
hesitated to turn my master thesis into a paper. With at least a partial fix in sight rWag25a;
Wag25bs, I’ve now finally decided to put these ideas forward. I’d like to thank my advisor Peter
Scholze for his support throughout this project. I’d also like to thank Johannes Anschütz and
Quentin Gazda for their interest in my work and their encouragement to finally turn this work
into a preprint, as well as Bora Yalkinoglu for helpful comments on an earlier version.

This work was carried out while I was a master/Ph.D. student at the University/Max Planck
Institute for Mathematics in Bonn and I’d like to thank these institutions for their hospitality.
I was supported by DFG through Peter Scholze’s Leibniz-Preis.
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§2. q-Witt vectors

§2. q-Witt vectors
In this section we’ll introduce a functor which associates to any ring R a system of rings
(q9Wm(R))m∈N, called the truncated q-Witt vectors of R. After a brief recollection of some facts
about cyclotomic polynomials in §2.1, we’ll give the definition of q9Wm(−) and study some
basic properties in §2.2. In §2.4 and §2.6 we’ll study the behaviour of q9Wm(−) on Λ-rings and
under étale ring morphisms.

§2.1. Some technical preliminaries
We record some elementary facts about cyclotomic polynomials that will be used throughout
the text.

2.1. Lemma. — Let m and n be positive integers and let R = Zrqs/(Φm(q),Φn(q)). Let
d = gcd(m,n). If p is a prime factor of m/d or n/d, then p = 0 in R. In particular, the
ring R vanishes unless m/n = pα for some prime p and some α ∈ Z. In the latter case,
R „= Fprqs/Φmintm,nu(q).

Proof. Clearly qm = qn = 1 in R, hence also qd = 1 in R. If p divides m/d, then this implies
qm/p = 1. But also

rpsqm/p = 1 + qm/p + (qm/p)2 + · · ·+ (qm/p)p−1 = 0

in R, because Φm(q) divides the left-hand side. Thus p = 0, as claimed. The case where p
divides n/d is analogous. This immediately implies the second assertion. For the third one,
assume α ⩾ 0 without restriction and use that

Φn(q) ≡ Φmpα(q) ≡

#

Φm(q)
pα if p | m

Φm(q)
(p−1)pα if p ∤ m

mod p

holds in this case.

2.2. Lemma. — Let m be a positive integer. Then the following ideals of Zrqs are equal:
`

rpsqm/p
∣∣ p prime factor of m

˘

=
`

Φm(q)
˘

.

Proof. The inclusion “⊆” is clear, so it suffices to show that rpsqm/p/Φm(q) generate the unit
ideal in Zrqs. If m has only one prime factor, this is trivial because then rpsqm/p/Φm(q) = 1.
So assume m has at least two prime factors. For any prime factor p of m, let Ip be the set of
divisors d | m such that d ̸= m and vp(d) = vp(m). Then

rpsqpm

Φm(q)
=

∏
d∈Ip

Φd(q) .

We wish to apply Lemma 2.3 below. To verify the condition, we have to check that for any
choice of elements (dp ∈ Ip)p prime factor of m, the ideal (Φdp(q) | p prime factor of m) is the unit
ideal in Zrqs. In fact, we claim that there must be prime factor p ̸= ℓ of m such that dp ∤ dℓ
and dℓ ∤ dp, so that already Φdp(q) and Φdℓ(q) generate the unit ideal by Lemma 2.1. Indeed, if
no such p and ℓ exist, then the set tdp | p prime factor of mu would be totally ordered with
respect to division, but then the maximal dp would have vℓ(dp) ⩾ vℓ(dℓ) = vℓ(m) for all prime
factors ℓ | m, forcing dp = m, in contradiction to our assumptions. This shows that Lemma 2.3
can be applied and we’re done.
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§2.1. Some technical preliminaries

2.3. Lemma. — Let (Ij)j∈J be finite sets indexed by another finite set J . Let ((xij )ij∈Ij )j∈J
be a J-tuple of Ij-tuples of elements of a ring R. Suppose that for any choice of indices
(ij ∈ Ij)j∈J the ideal (xij | j ∈ J) is the unit ideal in R. Then

`∏
ij∈Ij xij

∣∣ j ∈ J
˘

is the unit
ideal as well.

Proof. We do induction on
∑

j∈J |Ij |. If |Ij | = 1 for all j ∈ J , the assertion is trivial. So choose
elements s, t ∈ Ik, x ̸= y, for some index k ∈ J such that |Ik| ⩾ 2. We claim that the condition
still holds if we remove xs and xt from the tuple (xik)ik∈Ik and add xsxt instead. Indeed, the
only thing we have to check is the following: For any choice of indices (ij ∈ Ij)j∈J, j ̸=k, the
ideal (xsxt, xij | j ∈ J, j ̸= k) is the unit ideal in R. But this follows from

`

xsxt, xij
∣∣ j ∈ J, j ̸= k

˘

⊇
`

xs, xij
∣∣ j ∈ J, j ̸= k

˘`

xt, xij
∣∣ j ∈ J, j ̸= k

˘

and the fact that the right-hand side is R by assumption.

Furthermore, we’ll frequently use the following technical lemma.

2.4. Lemma. — Let R be a ring. Let I1, . . . , Ir be finitely many finitely generated ideals of R
and let f1, . . . , fs be a finitely many elements of A such that on the level of underlying sets we
have SpecR =

⋃r
j=1 SpecR/Ij ∪

⋃s
k=1 SpecRr1/fks. Then the functors

(−)^Ij : D(R) −! D(R) and (−)
”

1
fk

ı

: D(R) ! D(R)

are jointly conservative for j = 1, . . . , r, k = 1, . . . , s.

Proof. We do induction on r. The case r = 0 follows from the case r = 1 by choosing I1 to
be the unit ideal. So let’s first consider r = 1. In this case we’re given a finitely generated
ideal I := I1 and elements f1, . . . , fs such that SpecR = SpecR/I ∪

⋃s
k=1 SpecRr1/fks. Then

I is contained in the radical of the ideal (f1, . . . , fs), hence derived (f1, . . . , fs)-adic completion
factors through derived I-adic completion. So we may assume that I is generated by the fk.

Now let M ∈ D(R). It suffices to show that M̂I » 0 and M r1/fks » 0 for all k = 1, . . . , s
together imply M » 0. Write U = SpecR∖ V (I) and let

RΓ(U,OU ) »

˜∏
k

R
”

1
fk

ı

!
∏
k<ℓ

R
”

1
fkfℓ

ı

! . . .! R
”

1
f1···fs

ı

¸

denote the derived global sections of U , which can be computed by an alternating Čech complex
as indicated. Let M ∈ D(R). Then M̂I » RHomR(cofib(R! RΓ(U,OU )),M), see e.g. rStacks,
Tag 091Vs. Hence M̂I » 0 implies that R! RΓ(U,OU ) induces an equivalence

RHomR

`

RΓ(U,OU ),M
˘ »
−! RHomR(R,M) » M .

Applying RHomR(M,−) shows RHomR(MbL
RRΓ(U,OU ),M) » RHomR(M,M). In particular,

the identity on M factors through M bL
R RΓ(U,OU ), which means that M must be a direct

summand of M bL
R RΓ(U,OU ). Since RΓ(U,OU ) is an idempotent E∞-R-algebra, one can even

show M » M bL
ARΓ(U,OU ), but we won’t need that. Using the above representation as a Čech

complex, we see that M r1/fks » 0 for all k = 1, . . . , s implies M bL
R RΓ(U,OU ) » 0. Hence

also its direct summand M must vanish, as claimed.

9
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§2. q-Witt vectors

Now let r ⩾ 2 and assume that the assertion has been proved for r − 1 many ideals.
Again, it’s enough to show that M̂Ij » 0 and M r1/fks » 0 jointly imply M » 0. By the case
r = 1 it’s enough to show M r1/f s » 0, where f ranges through a finite generating set of Ir.
But SpecRr1/f s =

⋃r−1
j=1 SpecRr1/f s/Ij ∪

⋃s
k=1 SpecRr1/(fkf)s, so the desired vanishing of

M r1/f s follows by applying the induction hypothesis to the ring Rr1/f s.

2.5. Remark. — As a consequence of Lemma 2.4, the functors − bL
Z Q and (−)^p are jointly

conservative on D(Z). Indeed, for any integer N ̸= 0, Lemma 2.4 shows that (−)r1/N s and
(−)^p for p | N are jointly conservative. Thus, if M ∈ D(Z) satisfies M̂p » 0 for all primes p,
then M !M r1/N s is an equivalence for all N , thus M » M bL

Z Q.

§2.2. Definitions and basic properties
2.6. Truncated big Witt vectors à la rHes15, §1s. — We’ll briefly recall the construction
of truncated big Witt vectors, as well as the Frobenius and Verschiebung maps, following
Hesselholt’s exposition.

Let R be an arbitrary commutative, but not necessarily unital ring, and S ⊆ N a subset
which is closed under divisors (a truncation set in Hesselholt’s terminology). The (S-truncated)
big Witt ring WS(R) is constructed as follows: As a set, WS(R) is given by RS . Its ring structure
is uniquely determined by the condition that for all n ∈ S the ghost map ghn : WS(R) ! R
given by

ghn
`

(xi)i∈S
˘

:=
∑
d|n

dx
n/d
d

is a morphism of rings and functorial in R.
For us, S will always be the set Tm of positive divisors of some integer m, and we’ll write

Wm(R) = WTm(R) for short. By rHes15, Lemmas 1.3–1.5s, for every divisor d | m there are
Frobenius and Verschiebung maps

Fm/d : Wm(R) −! Wd(R) and Vm/d : Wd(R) −! Wd(R)

such that Fm/d is a ring map and Vm/d is a map of abelian groups (in fact, a map of Wm(R)-
modules if we equip Wd(R) with the Wm(R)-module structure induced by Fm/d). If n = m/d
and the numbers m and d are clear from the context (or irrelevant), we abuse notation and
write just Fn := Fm/d and Vn := Vm/d. These maps fulfil the following relations: For all chains
of divisors e | d | m we have

Fd/e ◦ Fm/d = Fm/e and Vm/d ◦ Vd/e = Vm/e .

Furthermore, if n ⩾ 1 is arbitrary and k is coprime to n, then Fn ◦Vn = n and Fn ◦Vk = Vk ◦Fn,
where we use the abuse of notation we just warned about. Finally, there’s a multiplicative
section of ghm : Wm(R) ! R, called the Teichmüller lift(2.1)

τm(−) : R! Wm(R) .

The Teichmüller lift interacts with the Frobenius and the Verschiebung via the formulas

Fm/dτm(r) = τd(r)
m/d and x =

∑
d|m

Vm/dτd(xm/d)

(2.1)We choose τm(−) over the standard-notation r−s to distinguish between Teichmüller lifts to Wm(R) for
various m, but also to avoid confusion with the elements rm/dsqd = (qm − 1)/(qd − 1) in Zrqs
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for all r ∈ R and all x = (xd)d|m ∈ Wm(R).

2.7. Remark. — If m = pn is a prime power, then Wpn(R) „= Wn+1(R) equals the ring of
truncated p-typical Witt vectors of length n+1. Furthermore, the Frobenii and Verschiebungen
Fp and Vp coincide with their p-typical namesakes F and V , as does the Teichmüller lift.

Now we can start to define what q-Witt vectors are.

2.8. Definition. — Fix a commutative, but not necessarily unital ring R. A q-FV -system
of rings over R is a system of Zrqs-algebras (Wm)m∈N, together with the following structure:
(a) For all m ∈ N, a Zrqs-algebra map Wm(R)rqs/(qm − 1) !Wm.
(b) For all divisors d | m, a Zrqs-algebra morphism Fm/d : Wm ! Wd and a Zrqs-module

morphism Vm/d : Wd ! Wm. These must be compatible with the usual Frobenii and
Verschiebungen on ordinary Witt vectors (via the morphisms from (a)) and satisfy

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = rm/dsqd .

These objects form an obvious category, which we denote CRingq9FVR .

2.9. Lemma. — Let R be a commutative, but not necessarily unital ring. The category
CRingq9FVR has an inital object (q9Wm(R))m∈N. It can be explicitly described as

q9Wm(R) „= Wm(R)rqs/Im ,

where Im is the ideal generated by the following two kinds of generators:
(a) (qd − 1) imVm/d for all divisors d | m, and
(b) im(rd/esqeVm/d − Vm/eFd/e) for all chains of divisors e | d | m.

2.10. Definition. — Let R a commutative but not necessarily unital ring and let m be
a positive integer. The ring q9Wm(R) from Lemma 2.9 is called the ring of m-truncated big
q-Witt vectors over R.(2.2)

2.11. Remark. — Despite the name, q9Wm(R) is almost never a q-deformation of Wm(R).
Indeed, we have Vm/d ◦ Fm/d = m/d in the quotient q9Wm(R)/(q − 1). This is usually not
satisfied for ordinary Witt vectors, so Wm(R) ! q9Wm(R)/(q − 1) fails to be injective. By
contrast, Wm(R) ! q9Wm(R) is always injective, as we’ll see in Proposition 2.28. So enforcing
the condition Vm/d ◦ Fm/d doesn’t lose any information.

Proof of Lemma 2.9. If we can show that the Zrqs-linearly extended Frobenii and Verschiebun-
gen Fm/d : Wm(R)rqs ! Wd(R)rqs and Vm/d : Wd(R)rqs ! Wm(R)rqs descend to maps between
q9Wm(R) and q9Wd(R), then the claimed universal property will follow in a straightforward
way from the definition. Furthermore, it’s immediate from the definition of Im that the Ver-
schiebungen descend as required. So it remains to prove the same for the Frobenii. It’ll be
enough to show Fp(Im) ⊆ Im/p for all prime factors p | m.

(2.2)Beware that this definition is not consistent with rWag21, Definition 5.3s. The ring that was denoted
q9Wm(R) there coincides with q9Wm(R)^

(q−1), at least under mild hypothesis (namely those of Corollary 2.26);
indeed, this follows from a simple comparison of universal properties. Since we want to develop our theory in a
non-(q − 1)-completed setting (which we’ll need for the upcoming applications rWag25b; MW24s), it seemed the
right thing to change the notation, despite the confusion this may cause.
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§2. q-Witt vectors

Let’s first consider generators of the form (qd − 1)Vm/dx for x ∈ Wd(R). Depending on
whether n := m/d is coprime to p or not, the relations from 2.6 yield, respectively,

Fp
`

(qd − 1)Vnx
˘

= (qd − 1)Vn(Fpx) or Fp
`

(qd − 1)Vnx
˘

= p(qd − 1)V(m/p)/dx .

In either case, we get an element of Im/p. Now let’s consider the second type of generators
of the form rd/esqeVm/dx− Vm/eFd/ex for some x ∈ Wd(R). Once again we need to do a case
distinction.

Case 1: p divides both m/d and m/e. In this case we can use an easy computation as above
to show that Fp sends the element into Im/p.

Case 2: p is coprime to both m/d and m/e. Let’s write m0 := m/p, d0 := d/p, and e0 := e/p
for short. Using the relations from 2.6, we can compute

Fp
`

rd/esqeVm/dx− Vm/eFd/ex
˘

= rd/esqeVm0/d0(Fpx)− Vm0/e0Fd0/e0(Fpx)

= rd0/e0sqe0Vm0/d0(Fpx)− Vm0/e0Fd0/e0(Fpx) +
`

rd/esqe − rd0/e0sqe0
˘

Vm0/d0(Fpx)

The first summand is contained in Im/p by definition. Regarding the second summand, observe
that our assumptions imply that p is coprime to d/e = d0/e0 and therefore the sequences
t1, qe/p, (qe/p)2 . . . , (qe/p)d/e−1u and t1, qe, (qe)2 . . . , (qe)d/e−1u coincide modulo qd/p − 1 up to
permutation. Thus rd/esqe − rd0/e0sqe0 is divisible by qd/p − 1 = qd0 − 1 and so the second
summand is also contained in Im/p.

Case 3: p is coprime to m/d, but not to m/e. Put m0 := m/p and d0 := d/p again. Using
the relations from 2.6, we can compute

Fp
`

rd/esqeVm/dx− Vm/eFd/ex
˘

= rd/esqeVm0/d0(Fpx)− pVm0/eFd/ex

= p
`

rd0/esqeVm0/d0(Fpx)− Vm0/eFd0/e(Fpx)
˘

+
`

rpsqd0 − p
˘

rd0/esqeVm0/d0(Fpx) .

The first summand is again contained in Im/p by definition. Regarding the second summand,
we observe rpsqd0 ≡ p mod qd0 − 1 and so rpsqd0 rd0/esqe ≡ prd0/esqe mod qd0 − 1. Hence the
second summand is contained in (qd0 − 1) imVm0/d0 , which is in turn contained in Im/p by
definition. This finishes the proof.

2.12. Remark. — The proof of Lemma 2.9 shows that a similar universal property also holds
for every truncated sequence: If S ⊆ N is any truncation set (in the sense of 2.6), we define
an S-truncated q-FV -system of rings to be a system (Wm)m∈S equipped with the structure
from Definition 2.8(a), (b) for all m ∈ S. Then (q9Wm(R))m∈S is initial among such systems.
This observation will often be used, as its often easier to verify this “truncated” version of the
universal property.

2.13. Ghost maps and Teichmüller lifts for q-Witt vectors. — We can construct
analogues of the ghost maps for q-Witt vectors as follows: Recall that the classical ghost map
gh1 : Wm(R) ! R can be identified with quotienting out the images of all Verschiebungen. For
q-Witt vectors, we compute:

q9Wm(R)/pimVp | p prime factor of mq „= Wm(R)rqs/pIm, imVp | p prime factor of mq

„= Rrqs/
`

rpsqm/p
∣∣ p prime factor of m

˘

„= Rrqs/Φm(q) .
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The isomorphism in the second line follows from Wm(R)/pimVp | p prime factor of mq „= R
and the third isomorphism follows from Lemma 2.2. Therefore we obtain a canonical projection

gh1 : q9Wm(R) −! Rrζms ,

where Rrζms := Rrqs/Φm(q) (so that ζm denotes an mth root of unity). The map gh1 will be
regarded as the first ghost map. In general, we define

ghm/d : q9Wm(R) −! Rrζds

as the composition of Fm/d : q9Wm(R) ! q9Wd(R) with gh1 : q9Wd(R) ! Rrζds. One immedi-
ately verifies that the ghost maps for q-Witt vectors are compatible with the ordinary ghost
maps in the sense that

Wm(R) R

q9Wm(R) Rrζds

ghm/d

ghm/d

commutes. Furthermore, there is also a Teichmüller lift

τm(−) : R −! q9Wm(R)

given as the composition of τm(−) : R! Wm(R) with the canonical map Wm(R) ! q9Wm(R).

2.14. What about Restrictions? — Unfortunately, it turns out that the usual restriction
maps Resm/d : Wm(R) ! Wd(R) do not extend to Zrqs-algebra morphisms between q9Wm(R)
and q9Wd(R). Indeed, such a morphism would necessarily commute with the Verschiebungen
and thus induce a Zrqs-algebra morphism

Rrζms = Rrqs/Φm(q) −! Rrqs/Φd(q) = Rrζds ,

which fails to exist even in very simple cases (e.g. m = pα is a prime power, R is not a ring of
characteristic p). So it seems that there are no analogues of restrictions in our theory, and in
particular, there is no ring q9W(R) = limm∈N, Resm/d q9Wm(R) of un-truncated q-Witt vectors.

In the rest of this subsection, we’ll show that various properties of ordinary Witt vectors
carry over to q-Witt vectors. Our main technical tool will be the following proposition.

2.15. Proposition. — Let R a commutative but not necessarily unital ring and let m be a
positive integer. Let p1, . . . , pr be the prime factors of m (assumed to be distinct). Then the
following “augmented Koszul complex” is exact:

. . . −!
à

i<j

q9Wm/pipj (R)
(Vpi−Vpj )
−−−−−−!

à

i

q9Wm/pi(R)
(Vpi )−−−! q9Wm(R)

gh1−−! Rrζms −! 0 .

2.16. Remark. — For the sake of clarity, let us give a precise description of the “augmented
Koszul complex” in Proposition 2.15. For every subset S ⊆ t1, . . . , ru, put pS =

∏
i∈S pi. Then

the complex above is given by
À

#S=i q9Wm/pS (R) in homological degree i− 1 (so that Rrζms

sits in homological degree −2). Furthermore, the differentials are determined as follows: For a
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subset S ⊆ t1, . . . , ru and an element j /∈ S, the component q9Wm/pS∪tju
(R) ! q9Wm/pS (R) of

the differential is given by

±Vpj : q9Wm/pSpj (R) −! q9Wm/pS (R) ,

where the sign follows a “Koszul-like” sign rule. That is, the sign is +1 if #ti ∈ S | i < ju is
even and −1 if that number is odd.

More succinctly, let T be the set of all positive integers whose prime factors are a subset
of tp1, . . . , pru. Let q9WT (R) :=

À

t∈T q9Wt(R). The Verschiebungen Vpi can be viewed as
endomorphisms of q9WT (R) which respect the direct sum decomposition (up to an indexing
shift). One can form the Koszul complex of the commuting endomorphisms (Vp1 , . . . , Vpr);
furthermore, this comes with a canonical augmentation to RrζT s :=

À

t∈T Rrζts. The complex
from Proposition 2.15 is then a direct summand of this augmented Koszul complex.

The proof of Proposition 2.15 that we’ll present avoids most calculations, at the cost of
using some ∞-categorical trickery. We don’t know if there is any direct proof that avoids this
heavy machinery. The first step will be to handle the case when m is a prime power, which is
fairly explicit and the only real calculation we’ll have to do.

2.17. Lemma. — Let R a commutative but not necessarily unital ring and let m = pα, α ⩾ 1,
be a prime power. Then the following sequence is exact:

0 −! q9Wpα−1(R)
Vp
−! q9Wpα(R)

gh1−−! Rrζpαs ! 0 .

Proof. Exactness on the right is clear from the discussion in 2.13, so it’s enough to show
that Vp : q9Wpα−1(R) ! q9Wpα(R) is injective. Let x ∈ Wpα−1(R)rqs and assume that the
element Vp(x) ∈Wpα(R)rqs vanishes in q9Wpα(R), i.e., Vp(x) is contained in Ipα . Recall from
Definition 2.10 that the ideal Ipα has two kinds of generators: First the elements in the image
of (qd − 1)Vm/d for every divisor d | m; then d must be of the form d = pi for 0 ⩽ i ⩽ α. And
second the elements in the image of rd/esqeVm/d− Vm/eFd/e for every chain of divisors e | d | m;
then d = pi and e = pj for some 0 ⩽ j ⩽ i ⩽ α. We may furthermore assume j < i, as the
corresponding generators are 0 in the case e = d. In total, we see that we can write

Vp(x) =
∑

0⩽i⩽α

`

qp
i − 1

˘

Vpα−i(yi) +
∑

0⩽j<i⩽α

´

rpi−js
qp
jVpα−i(zi,j)− Vpα−jFpi−j (zi,j)

¯

for some yi ∈ Wpi(R)rqs and some zi,j ∈ Wpi(R)rqs. We’re free to change x by elements
from Ipα−1 , so let’s do that to simplify the equation above. If 0 ⩽ i < α, then pi | pα−1,
hence x and x − (qp

i − 1)Vpα−1−i(yi) agree modulo Ipα−1 . Replacing x by the latter, the
corresponding summand in the equation above cancels, so we may assume yi = 0 for all
0 ⩽ i < α. Furthermore, if 0 ⩽ j < i < α, then pj | pi | pα−1 is a chain of divisors. Consequently,
we may replace x by x− rpi−js

qp
jVp(α−1)−i(zi,j)−Vp(α−1)−jFpi−j (zi,j) to assume zi,j = 0. Finally,

if we replace x by x −
∑

0⩽j<α(rp
(α−1)−js

qp
jFp(zα,j) − Vp(α−1)−jFp(α−1)−j (Fpzα,j)), then the

summands corresponding to zα,j won’t quite cancel, but at least the equation above can be
simplified to

Vp(x) =
`

qp
α − 1

˘

y +Φpα−1(q)z − VpFp(z) ,

where y = yα and z =
∑

0⩽j<αrp(α−1)−js
qp
j zα,j .
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This is now much easier to work with. We see that Vp(x+ Fp(z)) ∈ Wpα(R)rqs is divisible
by Φpα−1(q). The cokernel of Vp : Wpα−1(R)rqs ! Wpα(R)rqs is isomorphic to Rrqs (using the
well-known analogue of Lemma 2.17 for ordinary Witt vectors) and thus Φpα−1(q)-torsion-
free, since the latter is a monic polynomial. It follows that x + Fp(z) = Φpα−1(q)w for some
w ∈ Wpα−1(R)rqs. Then

Φpα−1(q)Vp(w) = Vp
`

x+ Fp(z)
˘

= Φpα−1(q)
`

(qp
α−1 − 1)y + z

˘

.

Since the monic polynomial Φpα−1(q) is a nonzerodivisor in Wpα(R)rqs as well, we get Vp(w) =
(qp

α−1 − 1)y+ z. Using that the ring q9Wpα−1(R) is (qp
α−1 − 1)-torsion, we obtain the following

equations in q9Wpα−1(R):

Φpα−1(q)w = pw = FpVp(w) =
`

qp
α−1 − 1

˘

Fp(y) + Fp(z) = Fp(z) .

This implies x = 0 in q9Wpα−1(R), thus completing the proof that the Verschiebung map
Vp : q9Wpα−1(R) ! q9Wpα(R) is injective.

To tackle the general case, we will interpret the “Koszul complex” from Proposition 2.15
as an “r-dimensional pushout” in the derived ∞-category of abelian groups. This is possible
thanks to the following technical lemma.

2.18. Lemma. — Let □r = P(t1, . . . , ru)op denote the “r-dimensional hypercube category”,
that is, the poset of subsets of t1, . . . , ru, partially ordered by reverse inclusion (so that t1, . . . , ru

is the initial object and ∅ is the final object). Furthermore, let ≓r = □r ∖ tt1, . . . , ruu be the
category obtained given by removing the final object of □r. Finally, let X : ≓r ! Ch(Z) be a
diagram indexed by ≓r and valued in the category of chain complexes.
(ar) The colimit colimS∈≓r X(S), taken in the derived ∞-category D(Z), can be identified with

the total complex of the “Koszul double complex”

T (r)(X) :=

˜

X
`

t1, . . . , ru
˘

−!
à

|S|=r−1

X(S) −! . . .!
à

|S|=2

X(S) −!
à

|S|=1

X(S)

¸

,

where each complex X(S)˚ sits in homological bi-degrees (|S| − 1, ˚) and we employ the
same “Koszul-like” sign rule as in Remark 2.16. Furthermore, this identification of the
colimit can be chosen in such a way that conditions (br) and (cr) below are satisfied.

(br) If Y : ≓r ! Ch(Z) is another diagram and α : X ⇒ Y is a natural transformation (also
valued in Ch(Z)), then the induced map colimS∈≓r X(S) ! colimS∈≓r Y (S) is given by
TotT (r)(X) ! TotT (r)(Y ).

(cr) If X▷ : □r ! Ch(Z) is another diagram such that X▷|≓r = X, then the induced map
colimS∈≓r X(S) ! X▷(∅) is given by

TotT (r)(X) −! Tot
`

X▷(∅)r0s
˘

„= X▷(∅) .

Here X▷(∅)r0s denotes the double complex obtained by placing X▷(∅)˚ in homological bi-
degrees (0, ˚) and the map T (r)(X) ! X▷(∅)r0s is induced by X(tiu) = X▷(tiu) ! X▷(∅)
for i = 1, . . . , r in bi-degrees (0, ˚) and the zero map in all other bi-degrees.
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Proof. We prove all three assertions simultaneously using induction on r. The case r = 1 is
trivial. If r = 2, then X : ≓2 ! Ch(Z) is a pushout diagram. By a well-known characterisation
of pushouts in D(Z), we obtain a cofibre sequence

X
`

t1, 2u
˘

−! X
`

t1u
˘

‘X
`

t2u
˘

−! colim
S∈≓2

X(S) .

Thus, we may identify colimS∈≓2 X(S) with the cone of the first map, which is (upon choosing
the right sign convention) precisely T (2)(X). Then (a2), (b2), and (c2) are easily checked.

Now let r > 2 and assume that (ar−1), (br−1), and (cr−1) are satisfied. We can write ≓r as
a pushout ≓r = (≓r−1 ×∆1) ⊔(≓r−1×t0u) (□

r−1 × t0u), where we view □r−1 × t0u as the full
subcategory of □r spanned by those S ⊆ t1, . . . , ru such that r ∈ S, and likewise □r−1 × t1u as
the full subcategory spanned by those S such that r /∈ S. By rL-HTT, Proposition 4.4.2.2s, we
may thus compute any ≓r-indexed colimit in D(Z) as a pushout of the corresponding colimits
indexed by ≓r−1 × t0u, ≓r−1 ×∆1, and □r−1 × t0u respectively. Let’s identify these one by
one. Let X0 = X|≓r−1×t0u. Applying (ar−1), we see that

colim
S∈≓r−1×t0u

X(S) » TotT (r−1)(X0) .

Next, observe that the inclusion ≓r−1 × t1u ⊆ ≓r−1 ×∆1 is coinitial (it is even right-anodyne,
as the same is true for t1u ⊆ ∆1). Therefore, putting X1 = X|≓r−1×t1u and using (ar−1) again,
we obtain

colim
S∈≓r−1×∆1

X(S) » TotT (r−1)(X1) .

Moreover, (br−1) ensures that colimS∈≓r−1×t0u X(S) ! colimS∈≓r−1×∆1 X(S) is identified with
the canonical map TotT (r−1)(X0) ! TotT (r−1)(X1). Finally, □r−1 × t0u has a final object,
and thus

colim
S∈□r−1×t0u

X(S) » X
`

tru
˘

;

furthermore, (cr−1) implies that colimS∈≓r−1×t0u X(S) ! colimS∈□r−1×t0u X(S) is identified
with the canonical map TotT (r−1)(X0) ! X(tru). Putting everything together and using the
r = 2 case, we conclude

colim
S∈≓r

X(S) » cone
´

TotT (r−1)(X0) ! TotT (r−1)(X0) ‘X
`

tru
˘

¯

.

The right-hand side is precisely T (r)(X), which settles (ar). Assertion (br) is an immedi-
ate consequence of (br−1) and the functoriality of cones. It remains to show that (cr) is
true. Using (cr−1), we see that colimS∈≓r−1×t0u X(S) ! X(∅) is given by the canonical map
TotT (r−1)(X0) ! X(∅) and likewise colimS∈≓r−1×∆1 X(S) ! X(∅) is given by the canonical
map TotT (r−1)(X1) ! X(∅). Furthermore, the diagram

TotT (r−1)(X0) X
`

tru
˘

TotT (r−1)(X1) X(∅)

commutes in Ch(Z). In particular, its commutativity in D(Z) is witnessed by a trivial homotopy,
and so the map from the homotopy pushout to X(∅) is precisely the map TotT (r)(X) ! X(∅)
considered in (cr). This finishes the induction.

16

http://people.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.4.4.2.2


§2.2. Definitions and basic properties

Proof of Proposition 2.15. Consider the diagram □r ! Ch(Zrqs) that sends ∅ ≠ S ⊆ t1, . . . , ru

to q9Wm/pS (R), where pS =
∏
i∈S pi, and sends ∅ to the complex (q9Wm(R) ! Rrζms)

concentrated in homological degrees 0 and −1 (we will frequently use that this complex
is quasi-isomorphic to ker(q9Wm(R) ! Rrζms)). Morphisms in □r are sent to the respective
Verschiebungen. By Lemma 2.18, what we have to show is precisely that this diagram is a
colimit diagram in D(Z), or equivalently, in D(Zrqs).

As a consequence of Lemma 2.4, the following exact endofunctors of D(Zrqs) are jointly
conservative:

(−)
”

1
p1···pr

ı

, (−)^
(pi,q

m/pj−1)
for all i ̸= j, (−)

”

1

qm/pj−1

∣∣∣ j ̸= i
ı

for all i .

So it suffices to check that we get a colimit diagram after applying each of these functors.
Proof after localisation at p1 · · · pr. After localising p1 · · · pr, all occurring Verschiebungen be-

come split injective, with Vpi having left-inverse p−1
i Fpi . In general, by rL-HA, Lemma 1.2.4.15s,

a diagram X : □r ! D(Z) is a colimit diagram if and only if the diagram □r−1 ! D(Z) given
by S 7! cofib(X(S) ! X(S ⊔ tru)) for all S ⊆ t1, . . . , r − 1u is a colimit diagram. In our
situation, all these maps are split injective, hence the cofibres are just the ordinary quotients.
Furthermore, the new diagram □r−1 ! D(Z) still has the property that all transition maps are
split injective, because Fpi commutes with Vpj for i ̸= j and so the splittings pass to cofibres.
Iterating this argument r times, we reduce to showing that

ˆ

ker
`

q9Wm(R)
gh1−−! Rrζms

˘

/
`

imVpi
∣∣ i = 1, . . . , r

˘

˙

”

1
p1···pr

ı

is a colimit of the empty diagram ≓0 ! D(Z). This is clear since the quotient above is 0 by
our calculation in 2.13.

Proof after (pi, q
m/pj−1)-adic completion. Put p := pi and ℓ := pj for convenience. Let’s first

see what happens after p-adic completion. Note that (−)^p » ((−)(p))
^
p . After applying (−)(p),

the Verschiebungen Vℓ for ℓ ̸= p become split injective. Applying rL-HA, Lemma 1.2.4.15s once
again, we can pass to cofibres r − 1 times and therefore reduce our assertion to proving that

`

q9Wm/p(R)/pimVℓ | ℓ ̸= pq
˘^

p

Vp
−!

´

q9Wm(R)/pimVℓ | ℓ ̸= pq

¯^

p
−! Rrζms^p

is a cofibre sequence. In fact, we only need to show that this is a cofibre sequence after
(qm/ℓ − 1)-adic completion. To this end, note that the left and the middle term in the above
sequence can be rewritten as

cofib
´

`

q9Wm/pℓ(R)/(imVℓ′ | ℓ′ ̸= ℓ, p)
˘^

p

Vℓ−!
`

q9Wm/p(R)/(imVℓ′ | ℓ′ ̸= ℓ, p)
˘^

p

¯

,

cofib
´

`

q9Wm/ℓ(R)/(imVℓ′ | ℓ′ ̸= ℓ, p)
˘^

p

Vℓ−!
`

q9Wm(R)/(imVℓ′ | ℓ′ ̸= ℓ, p)
˘^

p

¯

.

After (qm/ℓ − 1)-adic completion, these maps are not only split, but actually equivalences.
Indeed, VℓFℓ is equal to rℓsqm/pℓ in the first case and rℓsqm/ℓ in the second case, and both of
them are units in Zrqs

^

(p,qm/ℓ−1)
. So the first two terms in our would-be cofibre sequence vanish.

Furthermore, we compute

Rrζms
^

(p,qm/ℓ−1)
»
`

Rrqs/LΦm(q)
˘^

(p,qm/ℓ−1)
» Rrqs

^

(p,qm/ℓ−1)
/LΦm(q)
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and the right-hand side is 0 because Φm(q) divides the unit rℓsqm/ℓ in Zrqs
^

(p,qm/ℓ−1)
. So we

obtain a cofibre sequence for trivial reasons.
Proof after localisation at (qm/pj − 1) for all j ̸= i. Again, we put p = pi for convenience.

Furthermore, the letter ℓ will be used to denote prime factors ̸= p of m. Note that almost all
terms in our complex are (qm/ℓ − 1)-torsion for some ℓ ̸= p and thus die in our localisation.
The only surviving terms are

q9Wm/p(R)
”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

Vp
−! q9Wm(R)

”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

−! Rrζms

„

1

ζ
m/ℓ
m −1

∣∣∣∣ ℓ ̸= p

ȷ

and we must show that this is a cofibre sequence in D(Zrqs). Our strategy will be to show that
this sequence is a flat base change of the sequence from Lemma 2.17. To achieve this, write
m = pαn, where α is the exponent of p in the prime factorisation of m; we wish to show

q9Wm(R)
”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

„= q9Wpα(R) bZrqs,ψn Z
”

q, 1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

,

where ψn is the map that sends q 7! qn. This follows by a comparison of universal properties: Let
Tm denote the truncation set of divisors of m. Then Remark 2.12, together with the universal
property of localisation, shows that (q9Wd(R)

“

1/(qm/ℓ− 1)
∣∣ ℓ ̸= p

‰

)d∈Tm is universal among all
system of rings (Wd)d∈Tm equipped with a Wd(R)

“

q, 1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

/(qd − 1)-structure
on Wd as well as Frobenii and Verschiebungen satisfying the conditions from Definition 2.8(b).
Consider such a system (Wd)d∈Tm . Since Wd(R)

“

q, 1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

/(qd − 1) vanishes
unless d is of the form d = pin for some 0 ⩽ i ⩽ α, we see that only Wn,Wpn, . . . ,Wpαn can
be non-zero. Furthermore, compatibility with the usual Verschiebungen then shows that the
Wpin(R)-algebra structure on Wpin must factor over Wpin(R)/pimVℓ | ℓ ̸= pq „= Wpi(R). Now
Remark 2.12 again, together with the universal property of base change along ψn, shows that the
sequence (q9Wpi(R) bZrqs,ψn Z

“

q, 1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

)i=0,...,α is universal among all sequences
of rings (Wpin)i=0,...,α equipped with a Wpi(R)

“

q, 1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

/(qp
in − 1)-structure

on Wpin as well as compatible Frobenii and Verschiebungen. This finishes the proof of the
isomorphism claimed above, as it is now apparent that both sides satisfy the same universal
property.

So we’ve succeeded in writing the localisation q9Wm(R)
“

(qm/ℓ − 1)−1
∣∣ ℓ ̸= p

‰

as a base
change of q9Wpα(R) along the flat map ψn. By the same argument, we can do the same for
q9Wm/p(R). To reduce to Lemma 2.17, it remains to see that

Rrqs/Φm(q)
”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

„= Rrqs/Φpα(q) bZrqs,ψn Z
”

q, 1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

.

In other words, we must show that Φpα(q
n) and Φm(q) agree up to unit in the localisation

Z
“

q, (qm/ℓ − 1)−1
∣∣ ℓ ̸= p

‰

. This follows inductively from

Φdℓ(q) =

#

Φd(q
ℓ) if ℓ | d

Φd(q
ℓ)/Φd(q) if ℓ ∤ d

for all d | m and noting that Φd(q) is a unit in the second case, because it divides qm/ℓ − 1.

Having proved Proposition 2.15, we can now establish a bunch of pleasant properties of the
q-Witt vector functors. We start with the fact that the Verschiebungen are injective, which—at
least to the author—seems not at all trivial from Definition 2.10.
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2.19. Corollary. — Let R be a commutative, but not necessarily unital ring. For all positive
integers m and all divisors d | m, the Verschiebung Vm/d : q9Wd(R) ! q9Wm(R) is injective.

Proof. We use induction on m. The case where m is a prime power is clear from Lemma 2.17.
In the general case, we may assume without restriction that m/d = p is a prime factor of m.
Every element x ∈ ker(Vp : q9Wm/p(R) ! q9Wm(R)) is p-torsion since 0 = FpVp(x) = px. Since
the p-torsion part of q9Wm/p(R) maps bijectively to the the p-torsion part of q9Wm/p(R)(p),
it suffices to see that Vp : q9Wm/p(R)(p) ! q9Wm(R)(p) is injective. Suppose this was wrong;
then cofib(Vp) would acquire a nonzero H−1.

Now let p1, . . . , pr denote the prime factors of m, where pr = p. Consider the diagram
X : □r ! Ch(Z) sending ∅ ≠ S ⊆ t1, . . . , ru to q9Wm/pS (R)(p), where pS =

∏
i∈S pi, and ∅ to

ker(q9Wm(R)(p) ! Rrζms(p)); all morphisms in □r are sent to the corresponding Verschiebungen.
We know from the proof of Proposition 2.15 that X is a colimit diagram in D(Z). Furthermore,
rL-HA, Lemma 1.2.4.15s tells us that X is a colimit diagram if and only if the diagram
X ′ : □r−1 ! D(Z) given by S 7! cofib(Vp : q9Wm/pSp(R)(p) ! q9Wm/pS (R)(p)) for all S ⊆
t1, . . . , r− 1u is a colimit diagram. From the induction hypothesis, we know that these cofibres
are static, except for cofib(Vp : q9Wm/p(R)(p) ! q9Wm(R)(p)), which we’re assuming has a
nonzero H−1. Furthermore, X ′ maps every morphism in □r−1 to a split morphism, because Vpi
for pi ̸= p has a left inverse given by p−1

i Fpi and these left inverses persist after taking cofibres,
since Vp and Fpi commute for pi ̸= p. Therefore, if we pass to cofibres again, then everything
stays static, except for the nonzero H1, which remains unchanged. Furthermore, the diagram
X ′′ : □r−2 ! D(Z) obtained by passing to cofibres still has the property that all morphisms in
□r−2 are sent to split morphisms, since again the splittings in X ′ pass to cofibres. Iterating
this argument r times, we see that the nonzero H−1 persists, contradicting the fact that the
original diagram X is a colimit diagram.

Next, we will study the interaction with localisation.

2.20. Corollary. — Let R be a commutative, but not necessarily unital ring, and let m be a
positive integer.
(a) For any multiplicative subset U ⊆ Z, we have q9Wm(R)rU

−1s „= q9Wm(RrU−1s).
(b) For any multiplicative subset U ⊆ R, we have q9Wm(R)rτm(U)−1s „= q9Wm(RrU−1s).

Here τm(−) denotes the Teichmüller lift from 2.13.

Proof. First let U ⊆ Z be a multiplicative subset. Using induction, Proposition 2.15, and the
five lemma, it’s clear that q9Wm(RrU−1s) is U -local as an abelian group, hence the canonical
map q9Wm(R) ! q9Wm(RrU−1s) can be extended to a map

q9Wm(R)rU
−1s −! q9Wm

`

RrU−1s
˘

.

That this map is an isomorphism follows again from induction, Proposition 2.15, and the five
lemma. This proves (a).

Now let U ⊆ R be a multiplicative subset. As the Teichmüller lift is multiplicative, it’s clear
that q9Wm(RrU−1s) is τm(U)-local, hence we get a canonical map

q9Wm(R)
“

τm(U)−1
‰

−! q9Wm

`

RrU−1s
˘

.

That this map is an isomorphism follows from induction, Proposition 2.15, and the five lemma.
To make the induction work, implicitly we also use that the complex from Proposition 2.15

19

http://people.math.harvard.edu/~lurie/papers/HA.pdf#theorem.1.2.4.15


§2. q-Witt vectors

is a complex of q9Wm(R)-modules if we regard q9Wd(R) as an q9Wm(R)-algebra via the
Frobenius Fm/d : q9Wm(R) ! q9Wd(R); furthermore, this q9Wm(R)-module structure identifies
q9Wd(R)rτm(U)−1s with q9Wd(R)rτd(U)−1s, as Fm/d(τm(u)) = τd(u)

m/d for all u ∈ U . This
finishes the proof of (b).

Now we will study how q-Witt vectors interact with torsion. To this end, first we prove a
technical lemma that will be used several times in the discussion to come.

2.21. Lemma. — Let R be a commutative, but not necessarily unital Z(p)-algebra, let m be a
positive integer and let p be a prime number. Assume x ∈ q9Wm(R) satisfies gh1(x) = 0 and
Fℓ(x) = 0 for all prime factors ℓ | m such that ℓ ̸= p. Then x = Vp(y) for some y ∈ q9Wm/p(R);
in particular, x = 0 if p ∤ m.

Proof. Note that since R is a Z(p)-algebra, every prime ℓ ̸= p is invertible in q9Wm(R) by
Corollary 2.20(a). Hence every Verschiebung Vℓ for ℓ ̸= p is split injective, with left inverse
given by ℓ−1Fℓ. Furthermore, ℓ−1Fℓ commutes with Vℓ′ for ℓ ̸= ℓ′. Now let ℓ1, . . . , ℓr be the
prime factors ̸= p of m. By the previous considerations, we can write

q9Wm(R) „= I1 ‘ · · · ‘ Ir ‘ q9Wm(R)/
`

imVℓ1 , . . . , imVℓr
˘

,

where Ii = im(Vℓi : q9Wm/ℓi(R)/(imVℓ1 , . . . , imVℓi−1
) ! q9Wm(R)/(imVℓ1 , . . . , imVℓi−1

)). Our
assumption gh1(x) = 0 implies x ∈ (imVℓ1 , . . . , imVℓr , imVp) by 2.13 (we put imVp = 0 in the
case p ∤ m). On the other hand, Fℓ(x) = 0 for ℓ ∈ tℓ1, . . . , ℓru implies that the projection of x
to Ii vanishes for all i. Hence x = Vp(y) for some y ∈ q9Wm/p(R)/(imVℓ1 , . . . , imVℓr). By the
same argument as above, this quotient may be regarded as a direct summand of q9Wm/p(R)
and so we may regard y as an element of q9Wm(R) satisfying x = Vp(y), as desired.

2.22. Corollary. — Let R be a commutative, but not necessarily unital ring. If R is p-torsion-
free, then so is q9Wm(R) for all positive integers m. Likewise, if R has bounded p∞-torsion,
then so has q9Wm(R).

Proof. We may equivalently show the same for the localisations q9Wm(R)(p), as the p∞-
torsion part is preserved under this localisation. By Corollary 2.20(a), replacing q9Wm(R) by
q9Wm(R(p)) amounts to replacing R by R(p). Hence we may assume that R is a Z(p)-algebra.
We show both assertions simultaneously using induction on m. The case m = 1 is clear. Now
let m > 1 and suppose the assertion has been proved for smaller indices. Let x ∈ q9Wm(R) be
a p∞-torsion element. By choosing common bounds for the p∞-torsion in Rrqs/Φm(q) (which
is a free R-module) and q9Wm/ℓ(R) for all prime factors ℓ | m (including ℓ = p), we find N

independent of x such that pNx vanishes under gh1 and under Fℓ for all ℓ. If R is p-torsion free,
we may choose N = 0. Hence Lemma 2.21 implies pNx = Vp(y) for some y ∈ q9Wm/p(R). As
Vp is injective by Corollary 2.19, it follows that y ∈ q9Wm/p(R) must be a p∞-torsion element.
Thus pNy = 0, which implies p2Nx = 0. This shows that q9Wm(R) has p∞-torsion bounded by
2N , and is p-torsion free if R is, because in that case we may chose N = 0.

A related, but easier assertion is the following.

2.23. Lemma. — Let R be a commutative, but not necessarily unital ring, and let m be
a positive integer. If R is p-torsion-free for all prime factors p | m, then the ghost maps
ghm/d : q9Wm(R) ! Rrζds for d | m are jointly injective.
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Proof. Let x ∈ q9Wm(R) be nonzero; we wish to show that its image under some ghost map is
nonzero. If gh1(x) ̸= 0, we’re done; otherwise, 2.13 tells us that x =

∑
d|m, d ̸=m Vm/d(xd) for

some xd ∈ q9Wd(R). If xd ̸= 0 but gh1(xd) = 0, we may use 2.13 again to see that xd can be
written as a sum xd =

∑
e|d, e ̸=d Vd/e(ye) for some ye ∈ q9We(R). If we successively take the

largest d for which neither xd = 0 nor gh1(xd) ̸= 0 is satisfied and replace xd by such a sum,
we will eventually arrive at an expression for x in which every xd satisfies either xd = 0 or
gh1(xd) ̸= 0.

Now choose xd ̸= 0 such that m/d is minimal. Then ghm/d(Vm/e(xe)) = 0 for all e ̸= d as
either xe = 0 or m/d is not divisible by m/e by minimality. Hence

ghm/d(x) = ghm/d(Vm/d(xd)) =
m

d
gh1(xd) ̸= 0

as gh1(xd) ̸= 0 and Rrζds is finite free over R, which is m/d-torsion-free by assumption.

Another consequence of Proposition 2.15 related to Corollary 2.22 is the fact that q9Wm(−)
interacts well with derived p-adic completion.

2.24. Corollary. — Let R be a commutative, but not necessarily unital ring. If the derived
p-completion R̂p of R is static, then q9Wm(R)

^
p » q9Wm(R̂p) for all positive integers m. In

particular, if R is derived p-complete, then so is q9Wm(R).

Proof. We use induction on m. The case m = 1 is trivial, as q9W1(R) „= R. For m > 1,
we use Proposition 2.15 and the induction hypothesis to see that q9Wm(R̂p) sits inside an
acyclic complex in which all other terms are derived p-complete (including R̂prζms, as this is
finite free over R̂p). Hence q9Wm(R̂p) is derived p-complete itself. Thus the canonical map
q9Wm(R) ! q9Wm(R̂p) induces a map

q9Wm(R)
^
p −! q9Wm(R̂p) .

Morally, the way to see that this is an equivalence should be to apply the five lemma, but we
have to be careful since the derived p-completion on the left is a priori only an object in D(Z).
So instead, we use the proof of Proposition 2.15, the fact that derived p-completion preserves
finite colimits, and the induction hypothesis, to compute

fib
`

q9Wm(R)
^
p ! Rrζms^p

˘

» colim
S∈≓r

q9Wm/pS (R)
^
p

» colim
S∈≓r

q9Wm/pS (R̂p)

» fib
`

q9Wm(R)
^
p ! R̂prζms

˘

;

here tp1, . . . , pru are the prime factors of m and pS =
∏
i∈S pS for all subsets S ⊆ t1, . . . , ru.

Together with Rrζms
^
p » R̂prζms (as Rrζms is finite free over R), this finishes the proof.

2.25. Remark. — Corollary 2.24 is true without assuming that R̂p is static, if we interpret
R̂p as an animated ring and q9Wm(R̂p) as the animation of the m-truncated q-Witt vectors
functor. Note that the animation of q9Wm(−) agrees with the un-animated version on static
rings. Indeed, this follows via induction on m, using Proposition 2.15 and the fact that
Rrζms » Rrqs/LΦm(q) is already a derived quotient.

To finish this subsection, we study completions of the form q9Wm(R)
^

(qn−1).
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2.26. Corollary. — Let R be a commutative, but not necessarily unital ring, and let m, n be
positive integers. If the derived p-completions R̂p of R are static for all prime factors p | m,
then the derived (qn − 1)-adic completion q9Wm(R)

^

(qn−1) is static too. Furthermore, if R has
bounded p∞-torsion for all p | m, then also the (qn − 1)∞-torsion of q9Wm(R) is bounded.

To prove Corollary 2.26, we must first show the corresponding staticness assertions for
Rrζms „= Rrqs/Φm(q).

2.27. Lemma. — Let R be a commutative, but not necessarily unital ring, and let m, n be
positive integers.
(a) If the quotient m/ gcd(m,n) has at least two distinct prime factors, then Rrqs/Φm(q) is

(qn − 1)-torsion-free.
(b) Suppose m/ gcd(m,n) = pα is a prime power. If the derived p-completion R̂p of R is

static, then the derived (qn − 1)-completion of Rrqs/Φm(q) is static too. Furthermore, if
R has bounded p∞-torsion, then Rrqs/Φm(q) has bounded (qn − 1)∞-torsion.

Proof. Everything is (qm − 1)-torsion and (qm − 1, qn − 1) = (qgcd(m,n) − 1) holds in Zrqs,
hence we may replace n by gcd(m,n) and thus assume n | m. For (a), simply observe that
(Φm(q), q

n − 1) is the unit ideal in Zrqs, because it contains all prime factors of m/n by the
proof of Lemma 2.3.

For (b), if m = n, then Rrqs/Φm(q) is (qn− 1)-torsion, hence already (qn− 1)-complete, and
nothing happens. So from now on, assume m/n = pα, where α ⩾ 1. In this case 0 = rpαsqn holds
in Rrqs/Φm(q). Observe that rpαsqn = pα+(qn−1)u = pv+(qn−1)p

α−1, where u, v ∈ Zrqs are
some polynomials. Hence the ideals generated by p and by qn− 1 in Rrqs/Φm(q) have the same
radical. Thus, to show that the derived (qn− 1)-completion of (Rrqs/Φm(q))

^

(qn−1) is static, it’s
enough to show the same for the derived p-completion, which follows from our assumption that
R̂p is static since Rrqs/Φm(q) is a finite free R-module. For the torsion assertion, the same
observation shows

`

Rrqs/Φm(q)
˘“

(qn − 1)t
‰

⊆
`

Rrqs/Φm(q)
˘

rptαs ,
`

Rrqs/Φm(q)
˘

rpts ⊆
`

Rrqs/Φm(q)
˘“

(qn − 1)t(p
α−1)

‰

.

for all t ⩾ 1, which immediately implies that Rrqs/Φm(q) has bounded (qn − 1)∞-torsion if R
has bounded p∞-torsion.

Proof of Corollary 2.26. As in the proof of Lemma 2.27, we may assume without loss of
generality that n | m. Assume R̂ℓ is static for all prime factors ℓ | m. We use induction
to show that q9Wm(R)

^

(qn−1) is static. The case m = 1 is clear as q9W1(R) „= R is already
(qn − 1)-torsion. Now let m > 1. Recall (e.g. from rStacks, Tag 0BKGs) that

H−1
`

q9Wm(S)
^

(qn−1)

˘

„= lim
t⩾1

q9Wm(R)
“

(qn − 1)t
‰

where the transition maps in the limit are multiplication by (qn − 1). Let x = (xt) be an
element of the right-hand side; we wish to show x = 0. Using the inductive hypothesis, we see
that Fℓ(xt) = 0 for all prime factors ℓ | m and all t; hence also 0 = VℓFℓ(xt) = rℓsqm/ℓxt. By
Lemma 2.2, this implies Φm(q)xt = 0.

If m/n has at least two distinct prime factors, then (Φm(q), q
n − 1) is the unit ideal in Zrqs

(see the proof of Lemma 2.1). As every xt is both Φm(q)-torsion and (qn − 1)t-torsion, we
obtain x = 0, as required.
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So we’re left to deal with the case where m/n = pα is a prime power. In this case, the
ideal (Φm(q), qn − 1) ⊆ Zrqs is not the unit ideal, but at least it contains p (see again the proof
of Lemma 2.1) and thus xt is a pt-torsion element for all t ⩾ 1. We may therefore replace R
by its localisation R(p), which according to Corollary 2.20(a) amounts to replacing q9Wm(R)
by q9Wm(R)(p) and therefore doesn’t change the p∞-torsion part. Also note that replacing
R by R(p) doesn’t change the condition that the derived ℓ-adic completions are static for all
prime factors ℓ | m, as these completions can only become 0 for ℓ ̸= p. Using Lemma 2.27,
we know that gh1(xt) = 0 for all t. Together with Fℓ(xt) = 0, we conclude xt = Vp(yt) for
some yt ∈ q9Wm/p(R) by Lemma 2.21. As Vp is injective by Corollary 2.19, we see that yt is
a (qn − 1)t-torsion element and that yt−1 = (qn − 1)yt. Hence y = (yt) defines an element in
H−1(q9Wm(S)

^

(qn−1)). Then the inductive hypothesis shows y = 0 and thus x = 0 as well, as
desired. This finishes the proof that q9Wm(R)

^

(qn−1) is static.
Now assume that R has bounded ℓ∞-torsion for all prime factors ℓ | m. Let x ∈ q9Wm(R) be

a (qn−1)∞-torsion element. By induction and Lemma 2.27, we may choose a common bound for
the (qn − 1)∞-torsion in Rrqs/Φm(q) and q9Wm/ℓ(R) for all prime factors ℓ | m. Hence we find
a positive integer N , independent of x, such that (qn − 1)Nx vanishes under the ghost map gh1
and under the Frobenius maps Fℓ for all ℓ | m. Then 0 = VℓFℓ((q

n− 1)Nx) = rℓsqm/ℓ(q
n− 1)Nx

for all ℓ | m, which as before implies 0 = Φm(q)(q
n − 1)Nx.

If m/n has at least two distinct prime factors, then (qn − 1)Nx being both Φm(q)-torsion
and (qn − 1)∞-torsion implies (qn − 1)Nx = 0 and we’re done. If m/n = pα is a prime power,
we can only deduce that (qn − 1)Nx is p∞-torsion. But then we may once again replace R by
R(p) and apply Lemma 2.21 to see that (qn − 1)Nx = Vp(y) for some y ∈ q9Wm/p(R). Then
Vp being injective by Corollary 2.19 implies that y must be a (qn − 1)∞-torsion element too.
Hence (qn − 1)Ny = 0. Thus (qn − 1)2Nx = 0 and we’re done.

§2.3. Injectivity of Wm(R) ! q9Wm(R)

In this subsection we’ll do as the title says and prove the following consequence of Proposi-
tion 2.15:

2.28. Proposition. — Let R be a commutative, but not necessarily unital ring, and let m be
a positive integer. Then the natural map Wm(R) ! q9Wm(R) is injective.

Proposition 2.28 won’t be needed in the rest of this article, but it’s perhaps rather satisfying
to know that q9Wm(R) is really an extension of Wm(R). To prove this, first we need one more
simple corollary of Proposition 2.15.

2.29. Corollary. — Let R↠ R′ be a surjection of commutative, but not necessarily unital
rings, and let J be its kernel (which we again consider as a commutative, not necessarily unital
ring). Then the sequence

0 −! q9Wm(J) −! q9Wm(R) −! q9Wm(R
′) −! 0

is exact for all positive integers m.

Proof. We use induction on m. The case m = 1 is clear. For m > 1, we use the proof of
Proposition 2.15 together with the fact that colimS∈≓r preserves cofibre sequences to see that
fib(q9Wm(J) ! Jrζms) ! fib(q9Wm(R) ! Rrζms) ! fib(q9Wm(R

′) ! R′rζms) is a cofibre
sequence. So is Jrζms −! Rrζms −! R′rζms, as it is the base change of J ! R! R′ along the
finite free ring map Z ! Zrζms. This proves what we want.
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Furthermore, to prove Proposition 2.28, we need the following lemma with a somewhat
lengthy, but straightforward proof.

2.30. Lemma. — Let R be a commutative, but not necessarily unital Z(p)-algebra, and let
m = pαn, where α is the exponent of p in the prime factorisation of m. Then

q9Wm(R) „=
∏
d|n

q9Wpα(R) bZ(p)rqs,ψd Z(p)rqs/Φd(q
pα) ,

where ψd : Z(p)rqs ! Z(p)rqs is the map sending q 7! qd.

Proof. Let’s abbreviate the right-hand side by Πm. We’ll explain how to give (Πm)m∈N the
structure of a q-FV -system over R as in Definition 2.8. To equip Πm with a Wm(R)-algebra
structure, we must construct a ring map from Wm(R) into each factor. On the dth factor we
construct the desired map as the composition

Wm(R) = Wpαn(R)
Fn/d
−−−! Wpαd(R)

Resd−−−! Wpα(R) −! q9Wpα(R)

This defines a map Wm(R) ! Πm. To understand what this map is really doing, observe that
Wm(R) „= Wn(Wpα(R)) „=

∏
d|nWpα(R). Here the first isomorphism is rBor11, Corollary 5.4s,

the second is induced by the ghost maps for Wn(−), using that n is invertible on Wpα(R) by
our assumption that R is a Z(p)-algebra. Then the map Wm(R) ! Πm is simply given by
matching up the factors.

This takes care of the Wm(R)-algebra structures. It remains to construct construct Frobenii
Fℓ : Πm ! Πm/ℓ and Verschiebungen Vℓ : Πm/ℓ ! Πm for all prime factors ℓ | m and verify that
they satisfy Vℓ ◦ Fℓ = rℓsqm/ℓ as well as Fℓ ◦ Vℓ = ℓ (but the latter will be trivial, so we won’t
mention it).

Case 1: ℓ = p. Here we simply take the maps induced by the usual Frobenius and
Verschiebung Fp : q9Wpα(R) ! q9Wpα−1(R) and Vp : q9Wpα−1(R) ! q9Wpα(R). To check
Vp ◦ Fp = rpsqm/p , we must check that

ψd
`

rpsqpα/p
˘

≡ rpsqm/p mod Φd(q
pα) .

In fact, we even claim that rpsqpαd/p ≡ rpsqpαn/p mod (qp
αd − 1). This is because the se-

quences t1, qp
αd/p, (qp

αd/p)2, . . . , (qp
αd/p)p−1u and t1, qp

αn/p, (qp
αn/p)2, . . . , (qp

αn/p)p−1u agree
modulo (qp

αd − 1) up to permutation, similar to the argument in the proof of Lemma 2.9.
Case 2: ℓ ̸= p. Here the Frobenius Fℓ is simply given by the projection to those factors

where d divides n/ℓ. The Verschiebung is given as follows: If w = (we)e|(n/ℓ) is an element of
Πm, we let Vℓ(w) = (Vℓ(w)d)d|n, where

Vℓ(w)d =

#

ℓwe if d = e | (n/ℓ)
0 else

.

To check Vℓ ◦ Fℓ = rℓsqm/ℓ , we have to verify rℓsqm/ℓ is either ℓ or 0 modulo Φd(q) · · ·Φpαd(q),
depending on whether d divides n/ℓ or not. This is straightforward.

We’ve thus succeeded in equipping (Πm)m∈N with the structure of a q-FV -system over R.
It remains to verify that it is in fact the initial one. To do so, let (Wm)m∈N be an arbitrary
q-FV system. For m = pαn as above and d | n, put Wm,d :=Wm/Φd(q

pα). Then

Wm
„=

∏
d|n

Wm,d ,
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because Z(p)rqs/(qm−1) „=
∏
d|n Z(p)rqs/Φd(q

pα) holds by Lemma 2.1 and the Chinese remainder
theorem. Furthermore, this decomposition of Wm is respected by Frobenii and Verschiebungen,
because it only depends on the Zrqs-algebra structure on Wm. For any d | n, the induced
maps Fn/d : Wpαn,d !Wpαd,d and Vn/d : Wpαd,d !Wpαn,d are isomorphisms. Indeed, we have
Fn/d ◦ Vn/d = n/d, which is invertible in Z(p), and also Vn/d ◦ Fn/d = rn/dsqpαd = n/d, because
Wpαd,d and Wpαn,d are (qp

αd − 1)-torsion.
In particular, the Wpαn(R)-algebra structure on Wpαn,d necessarily factors through the

Frobenius Fn/d : Wpαn(R) ! Wpαd(R). Furthermore, for all prime factors ℓ | d, the diagram

Wpαd(R) Wpαd,d

Wpαd/ℓ(R) Wpαd/ℓ/Φd(q
pα)

commutes. But the lower right corner vanishes by Lemma 2.1. Hence the Wpαd(R)-algebra struc-
ture on Wpαd,d factors through the quotient Wpαd(R) ↠ Wpαd(R)/pimVℓ | ℓ prime factor of dq.
This quotient map can be identified with Resd : Wpαd(R) ! Wpα(R).

To summarise, we’ve shown that the Wpαn(R)-algebra structure on Wpαn,d really factors
through Wpα(R). Hence for fixed n and d, the sequence (Wpαn,d)α⩾0 acquires the structure of a
t1, p, p2, . . . u-truncated qn-FV -system in the sense of Remark 2.12 (that is, it satisfies the same
axioms, but with q replaced by qn). Since we’ve checked rpsqpαd/p ≡ rpsqpαn/p mod qp

αd − 1,
and Wpα,d is a (qp

αd − 1)-torsion ring, we obtain equivalently a t1, p, p2, . . . u-truncated qd-FV -
system structure. The universal such system is clearly (q9Wpα(R) bZ(p)rqs,ψd Z(p)rqs)α⩾0 and so
we obtain canonical morphisms

q9Wpα(R) bZ(p)rqs,ψd Z(p)rqs/Φd(q
pα) −!Wpαn,d ,

witnessing the desired universal property for (Πm)m∈N.

Proof of Proposition 2.28. If R is p-torsion free for all prime factors p | m, then the assertion is
clear by Lemma 2.23. So let’s next assume that R is a p-torsion ring. Then Vp ◦ Fp = p holds
on ordinary Witt vectors. In particular, q9Wpα(R)/(q − 1) „= Wpα(R), because then clearly
both (q9Wpα(R)/(q − 1))α⩾0 and (Wpα(R))α⩾0 are universal among t1, p, p2, . . . u-truncated
q-FV -systems for which q = 1. This proves that Wpα(R) ! q9Wpα(R) has a section and is
therefore injective. For general m, write m = pαn, where α = vp(m). We must show that

Wm(R) „=
∏
d|n

Wpα(R) −!
∏
d|n

q9Wpα(R) bZ(p)rqs,ψd Z(p)rqs/Φd(q
pα) „= q9Wm(R)

is injective (see Lemma 2.30 and its proof). But the dth factor on the right-hand side maps to
q9Wpα(R) bZrqs,ψd Z(p)rqs/Φd(q). This is a (qd − 1)-torsion ring, hence it can be rewritten as
q9Wpα(R)/(q − 1) bZrqs,ψd Z(p)rqs/Φd(q) „= Wpα(R)rζds. Now Wpα(R) ! Wpα(R)rζds is clearly
injective and we’re done in the case where R is p-torsion.

Next, let’s assume R is pα-torsion for some α ⩾ 1. We use induction on α; the case α = 1
was just done. For α ⩾ 2, we have a short exact sequence 0 ! Rrps ! R! R/Rrps ! 0 of non-
unital rings. Using the inductive hypothesis for Rrps and R/Rrps together with Corollary 2.29
and the four lemma, we conclude that Wm(R) ! q9Wm(R) is injective, as required. This also
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settles the case where R is p∞-torsion, because then R =
⋃
α⩾1Rrpαs and both Wm(−) and

q9Wm(−) commute with filtered colimits.
Finally, let’s do the general case. We have a short exact sequence of non-unital rings

0 !
À

p|mRrp∞s ! R ! R ! 0, where R is p-torsion free for all p | m. So we already know
that the assertion is true for

À

p|mRrp∞s and R. Applying Corollary 2.29 and the four lemma
once again, we conclude that the assertion for R is true as well.

§2.4. q-Witt vectors of Λ-rings

In general, q9Wm(R) can be quite far from Rrqs/(qm − 1). However, in the presence of a
Λ-structure on R, there are certain maps between these rings. The purpose of this subsection is
to describe these maps. As a consequence, we will see that q9Wm(Z) „= Zrqs/(qm − 1).

From now on, we will no longer consider non-unital rings; all rings in the following will be
commutative and unital.

2.31. The trivial map. — Suppose A is a Λ-ring. Then we get a section A! Wm(A) of
gh1 : Wm(A) ! A as follows: The cofree Λ-ring under A is the big Witt ring W(A), hence we
get a section s : A! W(A) of gh1. Composing with the restriction map Res: W(A) ! Wm(A)
gives the desired section. We can now extend this section Zrqs-linearly to obtain a map

sm : Arqs/(qm − 1) −! q9Wm(A) ,

whose composition with gh1 is the canonical map Arqs/(qm−1) ! Arqs/Φm(q). More generally,
if we write s : A! W(A) „= AN as s(x) = (δm(x))m∈N for all x ∈ A, then

ψm(x) :=
∑
d|m

dδd(x)
m/d = ghm

`

s(x)
˘

is the mth Adams operation ψm : A ! A of the Λ-ring A. Clearly ψm is a ring morphism.
Hence for the trivial comparison map sm : Arqs/(qm − 1) ! q9Wm(A) constructed above, the
composition ghm/d ◦ sm agrees with the canonical projection Arqs/(qm − 1) ! Arqs/Φd(q)

followed by ψm/d, extended Zrqs-linearly.

2.32. Remark. — The construction from 2.31 as well as all other results in this subsection
remain valid if we fix m and only assume that A is a Λm-ring: that is, a ΛZ,E-ring in the sense
of rBor11, 1.17s, where E = tpZ | p prime factor of mu. The only necessary change will be to
replace W(A), the cofree Λ-ring under A, by WS(A), the cofree Λm-ring under A, where S ⊆ N
is the truncation set of all positive integers whose prime factors are also prime factors of m.

The map from 2.31 is a little silly yet surprisingly useful (as we’ll see). Nevertheless,
it is seldom an isomorphism or even surjective. We’ll now set out to construct another
comparison map cm : q9Wm(A) ! Arqs/(qm − 1), which is more suitable for computations.
Similar maps have been found independently by Pridham rPri19, Remark 3.15s and Molokov
rMol22, Proposition 3.1s.

We’ve seen in 2.31 that the Adams operations on a Λ-ring A can be expressed in terms of
the ghost maps on W(A) via the system of maps (of sets) δm : A ! A. We’ll show now that
conversely, the ghost maps can be expressed in terms of Adams operations.
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2.33. Lemma. — For any Λ-ring A with Adams operations ψm : A! A, there are functorial
maps (of sets) εm : Wm(A) ! A for all m ∈ N such that

ghm(x) =
∑
d|m

dψm/d
`

εdResm/d(x)
˘

for all x ∈ Wm(A). Here Resm/d : Wm(A) ! Wd(A) is used to denote the restriction map for
ordinary Witt vectors.

Proof. For the purpose of this proof, let us abuse notation by denoting the composition
of s : A ! W(A) from 2.31 with Res: W(A) ! Wm(A) also by sm. We claim that every
x ∈ Wm(A) can expressed as a sum x =

∑
d|m Vd(sm/d(xm/d)) for xd ∈ A in a unique way.

Believing this claim, we can simply define εm(x) := x1 and compute

ghm(x) =
∑
d|m

ghm
`

Vd
`

sm/d(xm/d)
˘˘

=
∑
d|m

d ghm/d
`

sm/d(xm/d)
˘

=
∑
d|m

dψm/d(xm/d) .

Since Resm/d(x) =
∑

e|d Ve(sd/e(xm/(d/e))), our definition yields εdResm/d(x) = xm/d, so the
computation shows that the desired formula holds.

To prove the claim, let’s first show that every x ∈ Wm(A) has such a representation. We use
induction onm. The casem = 1 is clear. Form > 1, let xm := gh1(x), then gh1(x−sm(xm)) = 0,
hence x−sm(xm) is contained in the ideal (imVp | p prime factor of m). Applying the inductive
hypothesis for all Wm/p(A), we get a representation x = sm(xm) +

∑
d|m, d ̸=1 Vd(sm/d(xm/d))

as desired.
We’ll only prove uniqueness in the case where A is flat over Z and leave the general case to

the reader. The flat case will be enough for our purposes, since it allows us to define εm for
Z-flat Λ-rings, hence, in particular, for free Λ-rings (possibly in infinitely many generators).
By a formal argument, there’s then a unique way to extend the εm functorially to all Λ-rings:
Just write an arbitrary Λ-ring as a reflective coequaliser of free Λ-rings and use that Wm(−)
commutes with reflective coequalisers. To show uniqueness in the flat case, first observe that
in any representation x =

∑
d|m Vd(sm/d(xm/d)) the element xm is uniquely determined via

xm = gh1(x). Next, for all prime factors p | m, the element xm/p is uniquely determined via
ghp(x) = ψp(xm) + pxm/p, since A is p-torsion free by our flatness assumption. Continuing in
this way, we find that all xm/d are uniquely determined.

2.34. Lemma. — For any Λ-ring A with Adams operations ψm : A! A, the map (of sets,
a priori) cm : Wm(A) ! Arqs/(qm − 1) given by

cm(x) :=
∑
d|m

rdsqm/dψ
m/d

`

εdResm/d(x)
˘

is a morphism of rings.

Proof. We can always find a surjection A′ ↠ R from a Z-flat Λ-ring A′, hence we may assume
that A is Z-flat itself. Then Arqs/(qm − 1) !

∏
d|mArqs/Φd(q) is injective. So it suffices to

check that cm is a ring morphism modulo Φd(q) for all d | m. For this, note that

resqm/e ≡

#

e if d | me
0 if d ∤ me

mod Φd(q)

and then a straightforward calculation shows cm ≡ ψd ◦ ghm/d mod Φd(q). This is clearly a
ring morphism, hence we’re done.
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2.35. Corollary. — Let R be a Λ-ring. Then the ring morphism cm : Wm(A) ! Arqs/(qm−1)
from Lemma 2.34 extends uniquely to a functorial ring morphism

cm : q9Wm(A) −! Arqs/(qm − 1)

such that the following diagrams commute for all d | m:

q9Wm(A) Arqs/(qm − 1)

q9Wd(A) Arqs/(qd − 1)

cm

Fm/d

cd

and
q9Wm(A) Arqs/(qm − 1)

q9Wd(A) Arqs/(qd − 1)

cm

cd

Vm/d rm/ds
qd

Furthermore, the composition cm ◦ sm : Arqs/(qm − 1) ! Arqs/(qm − 1) is the Zrqs-linear
extension of the mth Adams operation ψm : A! A.

Proof. First one checks that the analogous diagrams with Wm(A) and Wd(A) commute. As
in the proof of Lemma 2.34, it’s enough to check this modulo all the cyclotomic polynomials,
which leads to a straightforward calculation. Having checked this, it’s now clear that the
system (Arqs/(qm − 1))d|m satisfies the conditions (a) and (b) of Definition 2.8 if we equip
Arqs/(qd−1) with the Wd(A)rqs/(qd−1)-algebra structure obtained via cd and extend Frobenius
and Verschiebung in the indicated way. By the universal property of (q9Wm(A))m∈N, this
provides us with the desired maps cm : q9Wm(A) ! Arqs/(qm − 1).

By surjecting from a Z-flat Λ-ring, it’s again enough to check that cm ◦ sm = ψm holds
modulo Φd(q) for every d | m. But we’ve seen in 2.31 that ghm/d ◦ sm = ψd and we’ve seen in
the proof of Lemma 2.34 that cm ≡ ψd ◦ghm/d mod Φd(q). Since ψm = ψd ◦ψm/d, we win.

Using the comparison map from Corollary 2.35, we can now compute q-Witt vectors in
some cases.

2.36. Proposition. — Let A be a Λ-ring such that all Adams operations ψm : A ! A are
injective. Then the ring morphism cm : q9Wm(A) ! Arqs/(qm − 1) from Corollary 2.35 is an
isomorphism onto the subring∑

d|m

rdsqm/dψ
m/d(A)rqs/(qm − 1) ⊆ Arqs/(qm − 1) .

Proof. For all primes p, A(p) is a δ-ring with injective Frobenius ψp : A(p) ! A(p), hence
rBS19, Lemma 2.28s shows that A is p-torsion free for all primes p. Hence the projections
Arqs/(qm − 1) ! Arqs/Φd(q) for d | m are jointly injective. The composition of cm with the
dth such projection is ψd ◦ ghm/d. Since ψd is injective and the ghost maps on q9Wm(A) are
jointly injective by Lemma 2.23, we deduce that cm : q9Wm(A) ! Arqs/(qm − 1) is injective.

It’s clear from the construction that the image of cm is contained in the indicated subring.
To show surjectivity, recall the construction of the maps εm : Wm(A) ! A from the proof of
Lemma 2.33. For every a ∈ A it immediately follows that cm(Vd(sm/d(a))) = rdsqm/dψ

m/d(a),
hence the image of cm must contain the whole subring above.

2.37. Corollary. — If A is a perfect Λ-ring (e.g. A = Z, A = Zp, or A = Ainf(R) for
some perfectoid ring R), then the comparison maps from 2.31 and Corollary 2.35 are both
isomorphisms:

sm : Arqs/(qm − 1)
„=−! q9Wm(A) and cm : q9Wm(A)

„=−! Arqs/(qm − 1) .
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Proof. For cm this is immediate from Proposition 2.36; for sm we use cm ◦ sm = ψm by
Corollary 2.35, which is an isomorphism since A is perfect.

2.38. Example. — As indicated in Remark 2.32, Corollary 2.37 is still true, for fixed m,
if A is only a perfect Λm-ring. Now assume that R is any ring such that m is invertible in R.
We can equip R with the trivial Λm-structure, where all Adams operations are the identity.
This is clearly perfect, hence cm : q9Wm(R) ! Rrqs/(qm − 1) is an isomorphism. On the other
hand, if p1, . . . , pr are invertible in R, then the cyclotomic polynomials Φd(q) for d | m are
pairwise coprime in Rrqs by Lemma 2.1, hence Rrqs/(qm−1) „=

∏
d|mRrqs/Φd(q) by the Chinese

remainder theorem. Now recall from the proof of Lemma 2.34 that cm ≡ ψd ◦ghm/d mod Φd(q)

and ψd is the identity on R. So an equivalent way of stating Corollary 2.37 in our case is that
`

ghm/d
˘

d|m : q9Wm(R)
„=−!

∏
d|m

Rrqs/Φd(q)

is an isomorphism.

2.39. Corollary. — If R is of finite type over Z, then q9Wm(R) is of finite type over
Zrqs/(qm − 1). In particular, it is noetherian.

Proof. If P ↠ R is a surjection from a polynomial ring, then q9Wm(P ) ! q9Wm(R) is
surjective too. Hence it suffices to consider the case where R = ZrT1, . . . , Tns is a polynomial
ring. Equip ZrT1, . . . , Tns with the unique Λ-structure in which ψp(Ti) = T pi for all primes p
and all i = 1, . . . , n. In this case, Proposition 2.36 tells us that q9Wm(R) isomorphic to the
subing Bm :=

∑
d|mrdsqm/dZrT

m/d
1 , . . . , T

m/d
n , qs/(qm − 1) sitting inside a chain of inclusions

ZrTm1 , . . . , T
m
k , qs/(qm − 1) ⊆ Bm ⊆ ZrT1, . . . , Tk, qs/(qm − 1) .

Since ZrT1, . . . , Tk, qs/(qm − 1) is finite over the noetherian ring ZrTm1 , . . . , T
m
k , qs/(qm − 1), it

follows that Bm must be finite over ZrTm1 , . . . , T
m
k , qs/(qm − 1) as well. This proves that Bm

has finite type over Zrqs/(qm − 1), as desired.

§2.5. Relative q-Witt vectors

Using the comparison map cm from §2.4, one can develop a theory of q-Witt vectors relative to
a fixed Λ-ring A, in such a way that all structure maps are Arqs-linear. This is necessary since
we would like to formulate our eventual applications rWag25b; MW24s in a relative setting.
First we introduce the following relative variant of Definition 2.8.

2.40. Definition. — Let A be a Λ-ring and let R be an A-algebra. A q-FV -system of
A-algebras over R is a system of Arqs-algebras (Wm)m∈N, together with the following structure:
(a) For all m ∈ N, an Arqs-algebra map q9Wm(R) bq9Wm(A) Arqs/(qm − 1) !Wm. Here the

tensor product is taken along the map cm from Lemma 2.34.
(b) For all divisors d | m, an Arqs-algebra morphism Fm/d : Wm !Wd and a Arqs-module mor-

phism Vm/d : Wd !Wm. These must be compatible with the Frobenii and Verschiebungen
on q-Witt vectors (via the morphisms from (a)) and satisfy

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = rm/dsqd .

29



§2. q-Witt vectors

These objects form an obvious category, which we denote CRingq9FVR/A .

2.41. Lemma. — Let A be a Λ-ring and R an A-algebra. The category CRingq9FVR/A has an
initial object (q9Wm(R/A))m∈N. Explicitly, q9Wm(R/A) is the quotient

q9Wm(R/A) „=
`

q9Wm(R) bq9Wm(A) Arqs/(qm − 1)
˘

/Um ,

where Um is the ideal generated by Vm/d(xy) b 1− Vm/d(x) b cd(y) for all divisors d | m, all
x ∈ q9Wd(R), and all y ∈ q9Wd(A).

2.42. Definition. — Let A be a Λ-ring and R an A-algebra. We call q9Wm(R/A) the ring
of m-truncated big q-Witt vectors of R relative A.

Proof of Lemma 2.41. First we should remark that Vm/d(x) b cd(y) is a well-defined element
of q9Wm(R) bq9Wm(A),cm Arqs/(qm − 1), even though, a priori, cd(y) is only an element of
Arqs/(qd − 1). But Vm/d(x) ∈ q9Wm(R) is a (qd − 1)-torsion element, so it doesn’t matter how
we lift cd(y) to an element of Arqs/(qm − 1).

To show that q9Wm(R/A), defined as the quotient above, is indeed the desired initial object,
we only need to check condition (b) from Definition 2.40. The ideal Um is constructed in such a
way that we get a well-defined Arqs-linear map q9Wd(R)bq9Wd(A)Arqs/(qd− 1) ! q9Wm(R/A)

by sending xb a 7! Vm/d(x) b a for all x ∈ q9Wd(R), a ∈ Arqs/(qd − 1). Clearly, this map kills
Ud, hence we get our desired Verschiebung Vm/d : q9Wd(R/A) ! q9Wm(R/A).

To construct the Frobenii, it’s enough to construct Fp : q9Wm(R/A) ! q9Wm/p(R/A) for all
prime factors p | m. The Frobenius Fp : q9Wm(R) ! q9Wm/p(R) and the canonical projection
Arqs/(qm−1) ! Arqs/(qm/p−1), which are compatible by Corollary 2.35, induce an Arqs-algebra
morphism

Fp : q9Wm(R) bq9Wm(A) Arqs/(qm − 1) −! q9Wm/p(R) bq9Wm/p(A) Arqs/(qm/p − 1) .

To finish the proof, we must check Fp(Um) ⊆ Um/p. So let’s consider a generator of the form
Vm/d(xy) b 1− Vm/d(x) b cd(y). Depending on whether p divides n := m/d or not, the element
FpVm/d(xy) b 1− FpVm/d(x) b cd(y) can be evaluated to either

p
`

V(m/p)/d(xy) b 1− V(m/p)/d(x) b cd(y)
˘

or Vn
`

Fp(x)Fp(y)
˘

b 1− Vn
`

Fp(x)
˘

b cd(y) .

In the first case, we visibly get an element of Um/p. In the second case, recall from Corollary 2.35
that the image of cd(y) in Arqs/(qd0 − 1) is precisely cd0(Fp(y)). Hence the element above is
again contained in Um/p.

2.43. Remark. — As in Remark 2.12, for every truncation set S ⊆ N, the truncated sequence
(q9Wm(R/A))m∈S satisfies a similar universal property. In the special case where S = Tm
is the set of divisors of m, the construction doesn’t need a full Λ-structure on A; instead, a
Λm-structure in the sense of Remark 2.32 will be enough.

Throughout the rest of this article, we’ll exclusively work in the relative setting, since our
applications work in the relative setting and the relative case isn’t really more difficult. It is,
however, a little heavier on the notation.

In the rest of this subsection, we’ll show that (under mild assumptions) most of our results
so far can be carried over to the relative setting. Let’s begin with a few canonical constructions.
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2.44. Ghost maps for relative q-Witt vectors. — For all divisors d | m, we get a relative
ghost map

ghm/d : q9Wm(R/A) −! R bA,ψd Arqs/Φd(q) .

This map can be constructed by tensoring the usual ghost map ghm/d : q9Wm(R) ! Rrqs/Φd(q)
with the natural projection Arqs/(qm − 1) ! Arqs/Φd(q) and checking that the ideal Um from
Lemma 2.41 is sent to 0. It’s also straightforward to check that ghm/d = ghd/d ◦ Fm/d and that
ghm/m : q9Wm(R/A) ! RbA,ψmArqs/Φm(q) can be identified with the quotient of q9Wm(R/A)
by the ideal generated by the images of all Verschiebungen Vm/d for d | m, d ̸= m.

2.45. Relative comparison maps. — Suppose R is a Λ-A-algebra. Using the universal prop-
erty of (q9Wm(−/A))m∈N, we see that the map q9Wm(R) ! Rrqs/(qm− 1) from Corollary 2.35
extends to an Arqs-algebra morphism

cm/A : q9Wm(R/A) −! Rrqs/(qm − 1) .

As we’ll see in the proof of Lemma 2.46 and in Remark 2.47, this map is often injective and its
image can be pinned down.

Furthermore, using cm ◦ sm = ψm by Corollary 2.35, we see that the trivial comparison map
sm : Arqs/(qm − 1) ! q9Wm(A) extends to an Arqs-algebra morphism

sm/A : R bA,ψm Arqs/(qm − 1) −! q9Wm(R/A) .

The composition cm/A ◦ sm/A is given by the linearised Adams operation ψm/A : RbA,ψm A! R.

2.46. Lemma. — If A! A′ is a morphism of Λ-rings and R is an A-algebra, then for all
m ∈ N the canonical map is an isomorphism

q9Wm(R/A) bA A
′ „=−! q9Wm(R bA A

′/A′) .

Proof. The statement might seem like an exercise in universal properties, but it’s not; the prob-
lem with such an approach is to construct a Wm(RbAA

′)-algebra structure on q9Wm(R/A)bAA
′.

So instead, our proof will be somewhat indirect. It’s enough to prove the case where
R „= ArtTiui∈Is is a polynomial ring over A (possibly in infinitely many variables). Indeed, using
the universal property, it’s straightforward to check that q9Wm(−/A) commutes with reflective
coequalisers and every A-algebra can be written as a reflective coequaliser of polynomial rings
over A.

To prove the polynomial ring case, equip ArtTiui∈Is with a Λ-A-algebra structure via
ψp(Ti) := T pi . The comparison map cm/A : q9Wm(ArtTiui∈Is/A) ! ArtTiui∈I , qs/(qm − 1) from
2.45 has its image contained in the subring

Bm :=
∑
d|m

rdsqm/dA
“␣

T
m/d
i

(

i∈I , q
‰

/(qm − 1)

But we also have a canonical map π : q9Wm(ZrtTiui∈Is) bZ A! q9Wm(ArtTiui∈Is/A). Using
Proposition 2.36 for ZrtTiui∈Is, it’s clear that cm ◦ π : q9Wm(ZrtTiui∈Is) bZ A ! Bm is an
isomorphism. We claim that the composition ι := π ◦ (cm ◦ π)−1 ◦ cm is the identity on
q9Wm(ArtTiui∈Is/A). Believing this for the moment, we’re done. Indeed, if ι is the identity,
then π yields an isomorphism q9Wm(ZrtTiui∈Is) bZ A „= q9Wm(ArtTiui∈Is/A), an analogous
isomorphism holds for A′, and then the desired base change property is immediate.
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To prove that ι is the identity, recall from Lemma 2.41 that q9Wm(ArtTiui∈Is/A) can be
written as a quotient of q9Wm(ArtTiui∈Is)bq9Wm(A)Arqs/(qm−1). Furthermore, it follows from
the proof Lemma 2.33 that q9Wm(ArtTiui∈Is) is generated as a Zrqs-module by elements of the
form Vd(sm/d(fa)), where f ∈ ZrtTiui∈Is is a polynomial with integral coefficients and a ∈ A.
So we only need to check that ι fixes elements of the form Vd(sm/d(fa))ba′ for f and a as above
and a′ ∈ Arqs/(qm−1). By construction, cm sends such an element to rdsqm/dψ

m/d(fa)a′. Under
the isomorphism (cm ◦π)−1, this is sent to Vd(sm/d(f))bψm/d(a)a′. But, again by construction,
we have ψm/d(a) = cm/d(sm/d(a)). Hence Vd(sm/d(fa)) b a′ − Vd(sm/d(f)) b ψm/d(a)a′ is
contained in the ideal Um from Lemma 2.41, which proves that ι indeed sends the element
Vd(sm/d(f)) b ψm/d(a)a′ to itself. We’re done.

2.47. Remark. — If A∞ is a perfect Λ-ring, then q9Wm(R) „= q9Wm(R/A∞) holds for all
A∞-algebras R by Corollary 2.37. In general, if A is a Λ-ring for which the map A! A∞ into its
colimit perfection is faithfully flat(2.3), then all the nice properties we proved about q9Wm(−) in
§2.2 will also hold for q9Wm(−/A), since we can deduce them via Lemma 2.46 and faithfully flat
descent. For example, it will be true that the Verschiebungen Vm/d : q9Wd(R/A) ! q9Wm(R/A)
are injective, the analogue of Proposition 2.15 is true, and if R is relatively perfect over A,
meaning that the linearised Adams operations ψp/A : RbA,ψp A! R are isomorphisms for all p,
then the comparison maps sm/A and cm/A from 2.45 are isomorphisms.

Λ-rings with the property that A! A∞ is faithfully flat will be called perfectly covered. In
most real life situations, the Adams operations ψm : A! A will be faithfully flat, hence A will
be perfectly covered. A being perfectly covered will also be a crucial assumption in our eventual
applications rMW24; Wag25bs. Still, it seems believable that even without this assumption
the analogue of Proposition 2.15 is true (from which all other desired properties could easily
be deduced). To prove this, the crucial step would be to show injectivity of the Verschiebung
Vp : q9Wpα−1(R/A) ! q9Wpα(R/A). But it’s not clear (at least to the author) how the proof of
Lemma 2.17 could be adapted.

§2.6. q-Witt vectors and étale morphisms

The goal of this subsection is to prove the following proposition, which is a q-Witt vector
analogue of results obtained by van der Kallen rvdKal86, Theorem (2.4)s, Langer–Zink rLZ04,
Corollary A.18s, and Borger rBor11, Theorem 9.2s.

2.48. Proposition. — Let A be a Λ-ring, let R ! R′ be an étale morphism of A-algebras,
and let m be a positive integer. Then q9Wm(R/A) ! q9Wm(R

′/A) is étale again. Furthermore,
if d | m, then

q9Wm(R
′/A) bq9Wm(R/A) q9Wd(R/A)

„=−! q9Wd(R
′/A)

is an isomorphism, where the tensor product is taken with respect to the Frobenius map
Fm/d : q9Wm(R/A) ! q9Wm/d(R/A).

(2.3)In fact, if any faithfully flat morphism of Λ-rings A ! A∞ into a perfect Λ-ring exists, then the Adams
operations ψm : A! A are faithfully flat (and so the map from A into its colimit perfection is faithfully flat as
well). Indeed, whether − bA,ψm A is exact can be checked after the faithfully flat base change along A! A∞.
But

p− bA,ψm Aq bA A∞ „= − bA,ψm A∞ „= − bA A∞

as A∞ is perfect, so we can conclude since A ! A∞ is flat. This shows that ψm : A ! A is flat. The same
argument shows faithfulness.
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2.49. Remark. — Let us indicate how the ordinary Witt vector analogue of Proposition 2.48
follows from the literature. For the étaleness of q9Wm(R) ! q9Wm(R

′), this is clear, but the
assertion that

Wm(R
′) bWm(R),Fm/d Wd(R)

„=−! Wd(R
′)

is either stated only for p-typical Witt vectors (under the assumption that R and R′ are F -finite)
or only for the tensor product with respect to the restriction map Resm/d : Wm(R) ! Wd(R).
Nevertheless, the general case is true and can be deduced as follows. It’s enough to consider
the case where m/d = p is a prime. Write m = pαn, where α = vp(m). By the p-typical case,
as stated in rLZ04, Corollary A.18s, the diagram

Wpα(R) Wpα(R
′)

Wpα(R) Wpα(R
′)

≓Fp Fp

is a pushout diagram of rings, provided that R and R′ are F -finite. By writing R ! R′ as a
filtered colimit of étale morphism between rings of finite type over Z (which are F -finite), we
see that the diagram above is a pushout in general. Furthermore, rBor11, Theorem 9.2s shows
that the horizontal arrows in the pushout diagram are étale (in the F -finite case, this is also
proved by Langer–Zink). Now rBor11, Corollary 5.4s allows us to write Wm(−) „= Wn(Wpα(−))
and rBor11, Corollary 9.4s shows that the functor Wn(−) preserves pushouts in which one leg
is étale. This proves what we want.

The crucial ingredient in the proof of Proposition 2.48 is the following.

2.50. Lemma. — Let A be a Λ-ring, let R! R′ be an étale morphism of A-algebras, and let
m be a positive integer. Then we get a canonical isomorphism

Wm(R
′) bWm(R) q9Wm(R/A)

„=−! q9Wm(R
′/A) .

Proof. We start with the case A = Z (that is, the case of absolute q-Witt vectors). We define

M :=
à

d|m
Wd(R)rqs and N :=

à

e|d|m
Wd(R)rqs .

By Definition 2.10, we can write q9Wm(R) „= coker(M ‘ N ! Wm(R)rqs), where the map
in question is given as follows: For a divisor d | m, the dth component of M ! Wm(R)rqs

is given by (qd − 1)Vm/d, and for a chain of divisors e | d | m, the (e, d)th component of
N ! Wm(R)rqs is given by rd/esqeVm/d − Vm/eFd/e. Note that all of these are morphisms of
Wm(R)rqs-modules, if we equip Wm/d(R)rqs with the module structure obtained through the
Frobenius Fm/d : Wm(R)rqs ! Wd(R)rqs.

Similarly, Wm(R
′) „= coker(M ′ ‘N ′ ! Wm(R

′)rqs), where M ′ and N ′ are defined as above,
but with R replaced by R′. The discussion in Remark 2.49 shows that M ′ „= Wm(R

′)bWm(R)M
and N ′ „= Wm(R

′)bWm(R)N , which immediately yields Wm(R
′)bWm(R)q9Wm(R) „= q9Wm(R

′),
as claimed.

The proof in the relative case is analogous. Let

K :=
à

d|m
q9Wd(R) bZrqs q9Wm(A) bZrqs Arqs .
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Then Lemma 2.41 shows that q9Wm(R/A) „= coker(K ! q9Wm(R) bq9Wm(A) Arqs/(qm − 1)),
where the map is given is given as follows: On the dth component, we send x b y b a to
Vm/d(xy) b a − Vm/d(x) b cm(y)a. Similarly, we can describe q9Wm(R

′/A) as a cokernel
coker(K ′ ! q9Wm(R

′) bq9Wm(A) Arqs/(qm − 1)). Since we’ve already proved the absolute case,
we find K ′ „= Wm(R

′) bWm(R) K and the claim follows.

Proof of Proposition 2.48. Both assertions follow immediately from Lemma 2.50 plus the anal-
ogous assertions for ordinary Witt vectors, which hold true as explained in Remark 2.49.

We’ll present two applications of Proposition 2.48. The first one is a similar pushout result
for ghost maps.

2.51. Corollary. — If A is a Λ-ring, R ! R′ is an étale map of A-algebras, and m is a
positive integer, then

q9Wm(R/A) q9Wm(R
′/A)

R bA,ψd Arζds R′ bA,ψd Arζds

≓ghm/d ghm/d

is a pushout diagram of rings (both in the derived and in the underived sense) for all d | m.

Proof. Using ghm/d = ghd/d ◦Fm/d and Proposition 2.48, we may assume m = d. Then
ghm/m : q9Wm(R/A) ! (R bA,ψm A)rqs/Φm(q) is identified with the projection map

q9Wm(R/A) −! coker
`

M ! q9Wm(R/A)
˘

,

where M :=
À

d|m q9Wd(R/A) and the map is given by (Vm/d)d|m. Likewise, the ghost map for
R′ is given by a similar projection map q9Wm(R

′/A) ! coker(M ′ ! q9Wm(R
′/A)). Proposi-

tion 2.48 implies M ′ „= q9Wm(R
′/A) bq9Wm(R/A) M and we’re done.

As a second application, we prove a partial inverse of Corollary 2.37. This result won’t
be needed again, but it’s pretty convenient as a sanity check: It often appears on first glance
that our q-Witt vectors (or later our q-de Rham–Witt complexes) are trivial in the sense of
q9Wm(R/A) „= Rrqs/(qm − 1). The following result shows that already when A = Z and R is
étale, this is not at all the case.

2.52. Corollary. — Let p be a prime and let R be an étale Z-algebra such that R ! R̂p
is injective (equivalently, p is not invertible on any connected component of SpecR). If a
Zrqs-algebra isomorphism

ψ : q9Wm(R)
„=−! Rrqs/(qm − 1)

exists for some positive integer m divisible by p, then the unique Frobenius lift ϕp : R̂p ! R̂p
restricts to a morphism ϕp : R! R. Furthermore, the ϕp commute for different p and R can be
equipped with a Λm-structure.

Proof. Recall from Corollary 2.37 that q9Wm(Z) „= Zrqs/(qm − 1); furthermore, by the com-
mutative diagrams from Corollary 2.35, this isomorphism identifies the Frobenius Fm/p with
the canonical projection Zrqs/(qm − 1) ! Zrqs/(qp − 1). Then Proposition 2.48 implies
q9Wp(R) „= q9Wm(R)/(q

p − 1). In particular, if an isomorphism ψ as above exists, then there
exists an isomorphism q9Wp(R) „= Rrqs/(qp − 1) too. So we may as well assume m = p.
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The isomorphism q9Wp(Z) „= Zrqs/(qp−1) from Corollary 2.37 identifies the ghost maps gh1
and ghp with the canonical projections Zrqs/(qp − 1) ! Zrζps and Zrqs/(qp − 1) ! Zrζ1s = Z,
respectively. The pushouts of Zrqs/(qp − 1) ! Rrqs/(qp − 1) along these maps are Rrζps and
R, respectively. But Corollary 2.51 tells us that these pushouts can also be identified with the
ghost maps for q9Wp(R). We thus obtain unique Zrqs-algebra automorphisms

ψ1 : Rrζps
„=−! Rrζps and ψp : R

„=−! R

such that the following diagrams commute:

q9Wp(R) Rrζps

Rrqs/(qp − 1) Rrζps

gh1

ψ„= ψ1„= and
q9Wp(R) R

Rrqs/(qp − 1) R

ghp

ψ„= ψp„=

By composing ψ with ψ−1
p b id : Rrqs/(qp − 1) „= R bZ Zrqs/(qp − 1) ! R bZ Zrqs/(qp − 1)

we may assume ψp = id. Now let x = (x1, xp) ∈ Wp(R) be an element written in Witt
vector coordinates; we view x as an element of q9Wp(R) as well. Then the left commutative
diagram shows ψ(x) ≡ ψ1 gh1(x) ≡ ψ1(x1) mod Φp(q) and similarly the right one shows
ψ(x) ≡ ψp ghp(x) ≡ xp1 + pxp mod (q − 1) since we assume ψp = id. Thus

ψ1(x1) ≡ xp1 mod (ζp − 1) ;

in other words, ψ1 induces the Frobenius on Rrζps/(ζp− 1) „= R/p. Since R is étale over Z, this
property, together with Zrqs-linearity, uniquely determines the morphism induced by ψ1 on
the (ζp − 1)-adic completion Rrζps

^

(ζp−1). This completion coincides with R̂prζps „= R̂p bZ Zrζps.
Now

ϕp b id : R̂p bZ Zrζps −! R̂p bZ Zrζps

also restricts to the Frobenius modulo (ζp − 1). Hence it coincides with ψ1 and must therefore
map the subring RbZZrζps ⊆ R̂pbZZrζps into itself. But ϕpbid also respects the decomposition
R̂p bZ Zrζps „=

Àp−2
i=0 ζ

i
pR̂p, hence ϕp must restrict to an endomorphism of R, as claimed.

Now let ℓ ̸= p be another prime factor of m such that R ! R̂ℓ is injective. Then
ϕℓ : R! R induces an endomorphism of R̂p as well, and it’s enough to show ϕp ◦ ϕℓ = ϕℓ ◦ ϕp
as endomorphisms of R̂p. By p-complete étaleness, we can further reduce to checking this on
R/p. But then everything becomes obvious because any ring endomorphism of R/p commutes
with the Frobenius.

To prove that R can be equipped with a Λm-structure, observe that the above construction
allows us to define commuting Frobenius lifts on R for all primes p | m. Indeed, on those
components of SpecR where p is not invertible, we can use the construction above, and on the
other components we can simply take the identity.
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§3. q-de Rham–Witt complexes
There are several objects that people call de Rham–Witt (pro-)complex : The original construction
rIll79s due to Illusie, building on work of Bloch, Deligne, and Lubkin, defines a pro-complex
(WnΩ

˚
R)n⩾1 for any Fp-algebra R. Langer–Zink rLZ04s define a relative de Rham–Witt pro-

complex (WnΩ
˚
R/A)n⩾1 for any map A! R of Z(p)-algebras. Finally, Hesselholt–Madsen rHM03;

Hes15s define an absolute big de Rham–Witt complex for any ring R.
The goal of this section is to study a system of (strictly) graded-commutative differential-

graded Arqs-algebras (q9WmΩ
˚
R/A)m∈N, which we call truncated q-de Rham–Witt complexes

of R, for any Λ-ring A and any A-algebra R. Even though our construction naturally works
with big Witt vectors, even in the case A = Z it’s a much closer analogue of rLZ04s than of
Hesselholt–Madsen’s absolute big de Rham–Witt complex. It seems possible that by dropping
the Zrqs-linearity of the differentials, one can obtain a q-analogue q9WmΩ

˚
R of Hesselholt–

Madsen’s absolute construction, but we haven’t pursued this so far.
Throughout this section, we work relative to a fixed Λ-ring A. The most important case is

A = Z, the additional generality is only needed for our eventual applications rWag25b; MW24s.

§3.1. Three non-equivalent categories
Even though Langer–Zink’s construction generalises Illusie’s, they proceed in a slightly different
way: For Langer–Zink, the Frobenius operators are part of the definition of (WnΩR/A)n⩾1,
whereas Illusie only constructs them a posteriori. Similarly, we have the choice of whether or
not to include Frobenii in our definition of (q9WmΩ

˚
R/A)m∈N. Both definitions turn out to be

equivalent, or rather they lead to two non-equivalent categories (Definitions 3.1 and 3.6) which
happen to have the same initial object (as we’ll see in Proposition 3.17). What makes things
even more confusing is that in the case where R is smooth over Z, there is a third category
(Definition 3.9) in which (q9WmΩ

˚
R/A)m∈N is initial (as we’ll see in Proposition 4.1).

To alleviate this confusion, let us first carefully introduce these three different categories.
We begin with the variant without Frobenii.

3.1. Definition. — Fix an A-algebra R. A q-V -system of differential-graded A-algebras over
R is a system (P ˚

m)m∈N of commutative differential-graded Arqs-algebras, equipped with the
following additional structure:
(a) For all m ∈ N, an Arqs-algebra morphism q9Wm(R/A) ! P 0

m.
(b) For all divisors d | m, a morphism Vm/d : P

˚
d ! P ˚

m of graded Arqs-modules. These are
required to be compatible with the Verschiebungen on relative q-Witt vectors (via the
morphisms from (a)) and must satisfy Vm/e = Vm/d ◦Vd/e for all chains of divisors e | d | m
as well as Vm/d(ω dη) = Vm/d(ω) dVm/d(η) for all ω ∈ P i+1

d , η ∈ P id.
Furthermore, we require that the following V -Teichmüller condition is satisfied:
(τV ) For all d | m and all ω ∈ P ˚

d , r ∈ R, one has

Vm/d(ω) dτm(r) = Vm/d
`

ωτd(r)
m/d−1

˘

dVm/dτd(r) .

Here τm(r) ∈ q9Wm(R/A) and τd(r) ∈ q9Wd(R/A) denote the respective Teichmüller lifts,
which we also implicitly identify with their images in P 0

m and P 0
d , respectively.

There is an obvious category of q-V -systems of differential-graded A-algebras over R, which we
denote CDGAlgq9VR/A.
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3.2. Lemma. — Let R be an A-algebra. In any q-V -system (P ˚
m)m∈N over R, the Ver-

schiebungen satisfy the relation
Vn ◦ d = n(d ◦ Vn) .

Proof. We write n = m/d and use the second condition from Definition 3.1(b) to obtain
Vm/d(dω) = Vm/d(1) dVm/d(ω) = rm/dsqd dVm/d(ω) for all ω ∈ P ˚

d . Here we also used that
Vm/d(1) = rm/dsqd holds in q9Wm(R/A). But ω and thus dVm/d(ω) are (qd−1)-torsion elements,
hence multiplication by rm/dsqd agrees with multiplication by m/d.

3.3. V -Divided powers. — In classical Witt vector theory, one often considers a divided
power structure on the ideal generated by the Verschiebung. In general, this can’t be done for
our q-Witt vectors q9Wm(R), since we’re working with big rather than p-typical Witt vectors
and we don’t assume that R is a Z(p)-algebra. However, if p is a prime factor of m, then there’s
still a well-defined map γp : imVp ! imVp sending Vp(x) to pp−2Vp(x

p) (here we use that Vp
is injective by Corollary 2.19); it satisfies pγp(v) = vp for all v ∈ imVp. We then say that a
derivation d: q9Wm(R) !M is a V -PD-derivation if dγp(v) = vp−1 dv.

3.4. Lemma. — Let R be an A-algebra. For any q-V -system (P ˚
m)m∈N over R and all m,

the composition q9Wm(R) ! q9Wm(R/A) ! P 0
m ! P 1

m is a V -PD-derivation. In fact, for any
prime factor p | m and all x ∈ q9Wm/p(R/A), we have the stronger condition

dVp(x
p) = Vp(x

p−1) dVp(x) .

Proof. The proof is mostly the same as in rLZ04, Lemma 1.5s. We use induction on m, the
case m = 1 being trivial. So let m > 1. We proceed in three steps: Step 1 is to prove the
relation in the case x = aτm/p(r) for some a ∈ Arqs and some r ∈ R. Step 2 is to prove that if
the relation is satisfied for x = x1 and x = x2, then it’s satisfied for x = x1 + x2 as well. Step 3
is prove the relation in the case x = Vℓ(y) for some prime factor ℓ | m (including ℓ = p) and
some y ∈ q9Wm/p(R).

For the first two steps, we can copy Langer–Zink’s proof, except that in the first step,
Langer and Zink use the F -Teichmüller condition (see (τF ) below), but the argument works
equally well with the V -Teichmüller condition (τV ). For the third step, apply ℓp−2Vℓ to both
sides of dVp(y

p) = Vp(y
p−1) dVp(y) (which we know from the inductive hypothesis). Using

Vℓ ◦ d = ℓ(d ◦ Vℓ) by Lemma 3.2 and Vℓ(y)
p = ℓp−1Vℓ(y), the left-hand side becomes

ℓp−2Vℓ
`

dVp(y
p)
˘

= ℓp−1 dVℓVp(y
p) = dVp

`

ℓp−1Vℓ(y
p)
˘

= dVp
`

Vℓ(y)
p
˘

.

In a similar way, the right-hand side becomes

ℓp−2Vℓ
`

Vp(y
p−1) dVp(y)

˘

= ℓp−2Vℓ
`

Vp(y
p−1)

˘

dVℓVp(y) = Vp
`

Vℓ(y)
p−1

˘

dVpVℓ(y) .

This finishes Step 3, the induction, and the proof.

3.5. Remark. — It turns out that an even stronger version of Lemma 3.4 is true: If d | m is
any divisor, and x ∈ q9Wd(R/A), then

dVm/d
`

xm/d
˘

= Vm/d
`

xm/d−1
˘

dVm/d(x) .

The author doesn’t know how to generalise the proof of Lemma 3.4. Instead, one can argue
as follows: It suffices to prove this for the universal q-V -system over R. We’ll see that such a
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thing exists in Proposition 3.12; furthermore, this proposition shows that we can reduce to the
case where R is a polynomial ring over A (possibly in infinitely many variables). Furthermore,
it will follow from Proposition 4.1 and passing to filtered colimits that the universal q-V -system
over a polynomial ring is degree-wise Z-torsion-free. But the relation in question is easily seen
to be true after multiplication with (m/d)m/d−1, so we’re done. Note that we couldn’t have
used this argument in the first place, since we’ll need Lemma 3.4 (in its weak form) to prove
Proposition 4.1.

Next we define the variant that has Frobenii.

3.6. Definition. — Fix an A-algebra R. A q-FV -system of differential-graded A-algebras
over R is a q-V -system (P ˚

m)m∈N as in Definition 3.1 together with the following additional
structure:
(c) For all d | m, a morphism Fm/d : P

˚
m ! P ˚

d of graded Arqs-algebras. These are required
to be compatible with the Frobenius maps on q-Witt vectors (via the morphisms from
Definition 3.1(a)) and must satisfy Fm/e = Fd/e ◦ Fm/d for all chains of divisors e | d | m.
Furthermore, they must interact with the Verschiebungen in the following way:

Fm/d ◦ d ◦ Vm/d = d and Vm/d
`

ωFm/d(η)
˘

= Vm/d(ω)η

for all ω ∈ P ˚
d , η ∈ P ˚

m. Moreover, Fn must commute with Vk whenever n, k are coprime.
Finally, we must have the familiar relations

Fm/d ◦ Vm/d = m/d and Vm/d ◦ Fm/d = rm/dsqd .

Last but not least, we require that the following F -Teichmüller condition is satisfied:
(τF ) For all d | m and all r ∈ R, one has

Fm/d
`

dτm(r)
˘

= τd(r)
m/d−1 dτd(r) .

Here τm(r) ∈ q9Wm(R/A) and τd(r) ∈ q9Wd(R/A) denote the respective Teichmüller lifts,
which we also implicitly identify with their images in P 0

m and P 0
d , respectively.

There is an obvious category of q-FV -systems of differential-graded algebras over R, which we
denote CDGAlgq9FVR/A , and an obvious forgetful functor CDGAlgq9FVR/A ! CDGAlgq9VR/A.

3.7. Lemma. — Let R be an A-algebra. In any q-FV -system (P ˚
m)m∈N over R, the Frobenii

satisfy the relation
d ◦ Fn = n(d ◦ Vn) .

Proof. We write n = m/d and use the conditions from Definition 3.6(c) to compute that
dFm/d(ω) = Fm/d(dVm/dFm/d(ω)) = rm/dsqdFm/d(dω) for all ω ∈ P ˚

m. But this computation
takes place in P ˚

d , which is (qd−1)-torsion, so multiplication by rm/dsqd and by m/d agree.

3.8. Remark. — In Definition 3.6, the condition that (P ˚
m) be a q-V -system was added for

simplicity, but it’s partially redundant. As explained after rLZ04, Definition 1.4s, the condition
Vm/d(ω dη) = Vm/d(ω) dVm/d(η) from Definition 3.1(b) is easily implied by the conditions
from Definition 3.6(c), and the V -Teichmüller condition (τV ) follows easily from this and the
F -Teichmüller condition (τF ).

Finally, we introduce the variant that only becomes relevant for smooth Z-algebras.
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3.9. Definition. — Fix an A-algebra R. A torsion-free q-V -system of differential-graded A-
algebras over R is a system (P ˚

m) of degree-wise Z-torsion-free differential-graded Arqs-algebras,
equipped with the additional structure from Definition 3.1(a) and (b). The corresponding
category will be denoted (CDGAlgq9VR/A)

tors9free.

3.10. Remark. — Note that every torsion-free q-V -system is also a q-V -system. Indeed,
in general, the V -Teichmüller condition (τV ) always holds up to (m/d)m/d−1-torsion, so it’s
automatically true in the Z-torsion-free case. In particular, there is a fully faithful forgetful
functor (CDGAlgq9VR/A)

tors9free ! CDGAlgq9VR/A.

3.11. A theory without restrictions (again). — Observe that we do not include any
restriction maps in Definitions 3.1, 3.6, and 3.9.(3.1) This is of course necessitated by the fact
that there are no restrictions for q-Witt vectors.

Surprisingly though, restrictions are also not needed for Langer–Zink’s construction! Indeed,
let R ! S be any map of Z(p)-algebras and let CDGAlg

FV, (p)
S/R be the category of FV -pro-

complexes (P ˚
n )n⩾1 over the R-algebra S as in rLZ04, Definition 1.4s, but without the restriction

maps P ˚
n+1 ! P ˚

n (this is of course an informal definition; we leave it to the reader to formalise it).
Then the de Rham–Witt pro-complex (WnΩ

˚
S/R)n⩾1 is still initial in the category CDGAlg

FV, (p)
S/R .

To see this, just skim through rLZ04, §1.3s and note that compatibility with the restrictions is
never enforced. We’ll see in Remark 3.18 below that this observation provides us with a map
from Langer–Zink’s de Rham–Witt complexes to our q-de Rham–Witt complexes.

§3.2. Construction of q-de Rham–Witt complexes
In this subsection we’ll construct (q9WmΩ

˚
R/A)m∈N and derive some first properties. Our goal

is to prove the following proposition.

3.12. Proposition. — Let R be an A-algebra. The category CDGAlgq9VR/A has an initial object
(q9WmΩ

˚
R/A)m∈N, which has the following properties:

(a) For all m ∈ N, the canonical map Ω˚
q9Wm(R/A)/Arqs

! q9WmΩ
˚
R/A is surjective. For m = 1,

it induces an isomorphism Ω˚
R/A

„= q9W1Ω
˚
R/A.

(b) For all m ∈ N, the structure map from Definition 3.1(a) induces an isomorphism
q9Wm(R/A) „= q9WmΩ

0
R/A.

3.13. Definition. — Let R be an A-algebra. For all m ∈ N, the differential-graded Arqs-
algebra q9WmΩ

˚
R/A from Proposition 3.12 is called the m-truncated q-de Rham–Witt complex

of R relative to A.(3.2)

Proof of Proposition 3.12. We proceed inductively. For m = 1, we put q9W1Ω
˚
R/A

:= Ω˚
R/A.

Now let m > 1 and assume that we’ve already constructed q9WdΩ
˚
R/A for all divisors d | m,

(3.1)Which is also why we can’t use the term FV -pro-complex as in rLZ04, Definition 1.4s—at best, in the
presence of Frobenii, we get a pro-system of graded Arqs-algebras, but never of complexes.

(3.2)Again, we’ve deviated again from the terminology of rWag21, Definition 5.17s, as we’re not working in a
(q − 1)-complete setting and also Z-torsion-freeness is not assumed. It will be apparent from Proposition 4.1
(plus Corollary 2.39 to ensure that completions behave nicely) that the q-de Rham–Witt complexes defined
in rWag21, Definition 5.17s coincide with (q9WmΩ˚

R)
^

(q−1), where the completion is taken degree-wise (and it
doesn’t matter whether we take the underived or the derived completion).
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d ̸= m, satisfying (a) and (b), along with Verschiebungen Vd/e for all e | d satisfying the
conditions from Definition 3.1. Now let J˚

m ⊆ Ω˚
q9Wm(R/A)/Arqs

be the smallest differential-
graded ideal satisfying the following conditions for all divisors d | m, d ̸= m:
(Vd) For all j ⩾ 1, all finite indexing sets I, and all sequences (wi, xi,1, . . . , xi,j)i∈I of elements

of q9Wd(R/A) such that 0 =
∑

i∈I wi dxi,1 ∧ · · · ∧ dxi,j holds in q9WdΩ
j
R/A (which is a

quotient of Ωjq9Wd(R/A)/Arqs
by (a), so the sum makes sense), the following homogeneous

degree-j element is contained in J˚
m:

ξ :=
∑
i∈I

Vm/d(wi) dVm/d(xi,1) ∧ · · · ∧ dVm/d(xi,j) .

(τd) For all x ∈ q9Wd(R/A) and all r ∈ R (so that Vm/d(x) and Vm/d(xτd(r)m/d−1) are already
defined), the following homogeneous degree-1 element is contained in J˚

m:

η := Vm/d(x) dτm(r)− Vm/d
`

xτd(r)
m/d−1

˘

dVm/dτd(r) .

Explicitly, J˚
m is the graded ideal generated by all ξ, dξ, η, and dη, where ξ and η are as in

(Vd) and (τd), respectively. We put q9WmΩ
˚
R/A

:= Ω˚
q9Wm(R)/Arqs

/J˚
m. It’s a differential-graded

Arqs-algebra by construction. Condition (Vd) makes sure that there’s a well-defined map
Vm/d : q9WdΩ

˚
R/A ! q9WmΩ

˚
R/A given by the formula

Vm/dpw dx1 ∧ · · · ∧ dxjq = Vm/d(w) dVm/d(x1) ∧ · · · ∧ dVm/d(xj) .

This automatically satisfies the condition from Definition 3.1(b). Furthermore, (τd) ensures
that q9WmΩ

˚
R satisfies the V -Teichmüller condition (τV ) for ω = x in degree 0, which easily

implies the general case. Finally, it’s clear from the construction that conditions (a) and (b)
are true. This finishes the inductive step. It’s straightforward to see that (q9WmΩ

˚
R/A)m∈N is

really initial in CDGAlgq9VR/A.

3.14. Remark. — As in Remark 2.43, the proof of Proposition 3.12 shows that a similar
universal property also holds for every truncated system: If S ⊆ N is any truncation set (in the
sense of 2.6), we define an S-truncated q-V -system of differential-graded A-algebras over R to
be a systems of differential-graded Zrqs-algebras (P ˚

m)m∈S equipped with the structure from
Definition 3.1(a), (b) for all m ∈ S as well as satisfying the V -Teichmüller condition (τV ) for
all m ∈ S. Then (q9WmΩ

˚
R/A)m∈S is the initial S-truncated q-V -system.

In the case where S = Tm is the set of divisors of m, we only need a Λm-structure on A to
define (q9WdΩ

˚
R/A)d∈Tm .

3.15. Ghost maps. — It turns out that (q9WmΩ
˚
R/A) comes equipped with maps of

differential-graded Arqs-algebras

ghm/d : q9WmΩ
˚
R/A −! Ω˚

R/A bA,ψd Arζds

for all d | m, generalising the ghost maps for relative q-Witt vectors. To construct these maps,
it’s enough to equip

`∏
d|m(Ω

˚
R/A bA,ψd Arζds)

˘

m∈N with the structure of a q-V -system over R.
According to Definition 3.1(a), the first piece of structure we must provide are ring maps

q9Wm(R/A) !
∏
d|m(RbA,ψd Arζds) for all m. But we can simply take them to be the product
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(ghm/d)d|m of all relative q-Witt vector ghost maps; see 2.44. Furthermore, we have to define
Verschiebungen

Vm/n :
∏
e|n

`

Ω˚
R/A bA,ψe Arζes

˘

−!
∏
d|m

`

Ω˚
R/A bA,ψd Arζds

˘

for all divisors n | m. We do this as follows: If ω = (ωe)e|n is homogeneous of degree i, we let
Vm/n(ω) := (Vm/n(ω)d)d|m, where

Vm/n(ω)d :=

#

(m/n)i+1ωe if d = e | n
0 else

.

This is compatible with Vm/n : q9Wn(R/A) ! q9Wm(R/A) because of how Witt vector Ver-
schiebungen interact with ghost maps. The other conditions from Definition 3.1(b) as well as
the V -Teichmüller condition (τV ) are straightforward to check. This finishes the construction.

Finally, our relative q-de Rham–Witt complexes enjoy a similar base change property as in
Lemma 2.46.

3.16. Lemma. — If A! A′ is a morphism of Λ-rings and R is an A-algebra, then for all
m ∈ N the canonical map is an isomorphism

q9WmΩ
˚
R/A bA A

′ „=−! q9WmΩ
˚
RbAA′/A′ .

Proof. It’s straightforward to verify the desired universal property for q9WmΩ
˚
R/A bA A

′. The
only non-obvious property is the condition from Definition 3.6(a), that is, the existence of an
Arqs-algebra map q9Wm(R bA A

′/A′) ! q9Wm(R/A) bA A
′. But this was taken care of in

Lemma 2.46.

§3.3. Construction of Frobenii

In this subsection we’ll prove the following proposition:

3.17. Proposition. — Let R be an A-algebra. There is a unique choice of Frobenius operators
on (q9WmΩ

˚
R/A)m∈N, making it into a q-FV -system. Moreover, this exhibits (q9WmΩ

˚
R/A)m∈N

as an initial object of the category of q-FV-systems.

3.18. Remark. — As a consequence of 3.11 and Proposition 3.17, we get a comparison map
between ordinary and q-de Rham–Witt complexes in the case where A a Z(p)-algebra. Indeed,
in this case there’s a forgetful functor

CDGAlgq9FVR/A −! CDGAlg
FV, (p)
R/Z(p)

sending (P ˚
m)m∈N to (P ˚

pn−1)n⩾1. By the universal property of usual de Rham–Witt complexes
(with the modification from 3.11), this induces morphisms

Wα+1Ω
˚
R/A −! q9WpαΩ

˚
R/A

for all α ⩾ 0, compatible with Frobenii and Verschiebungen.
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3.19. Battle plan. — Unfortunately, the proof of Proposition 3.17 will be rather laborious.
We construct the Frobenii Fm/d : q9WmΩ

˚
R/A ! q9WdΩ

˚
R/A using induction on m. For m = 1,

there’s nothing to do. For the rest of this subsection, let m > 1 and assume that Fd/e has been
constructed for all e | d | m, d ̸= m, in such a way that the conditions from Definition 3.6(c)
and (τF ) are satisfied. It then suffices to construct Fp : q9WmΩ

˚
R/A ! q9Wm/pΩ

˚
R/A for any

prime factor p | m.
To construct Fp for some fixed prime p, we will proceed as follows. First, we’ll restrict to

the case A = Z and construct a Zrqs-linear derivation

Fp d: q9Wm(R) −! q9Wm/pΩ
1
R/Z

(Construction 3.22 and Lemmas 3.21–3.26). A posteriori, it will turn out that Fp d = Fp ◦ d,
but we haven’t constructed Fp yet, so for the moment the notation Fp d has no intrinsic
meaning. Once Fp d is constructed, we’ll allow A to be an arbitrary Λ-ring again, construct
the desired graded Arqs-algebra map Fp : q9WmΩ

˚
R/A ! q9Wm/pΩ

˚
R/A (Construction 3.27), and

painstakingly verify that it has all desired properties (Lemmas 3.28–3.30).

3.20. The derivation Fp d. — Since we wish to have Fp d = Fp ◦d eventually, Definition 3.6
already tells us the values of Fp d in certain cases:
(a) On Teichmüller lifts, the values of Fp d are prescribed by Definition 3.6(τF ): We must

have
Fp dτm(r) = τm/p(r)

p−1 dτm/p(r) .

(b) On elements in imVℓ, where ℓ is any prime factor of m, the values of Fp d are prescribed
by Definition 3.6(c): If ℓ = p, we immediately get

Fp dVp(x) = dx .

If ℓ ̸= p, note that Fp dVℓ(x) is uniquely determined by pFp dVℓ(x) and ℓFp dVℓ(x), as ℓ
and p are coprime. Using Lemmas 3.2 and 3.7, we see that necessarily

pFp dVℓ(x) = dFpVℓ(x) and ℓFp dVℓ(x) = Fp(Vℓ dx) = Vℓ(Fp dx) .

Now Vℓ(Fp dx) is already defined by induction, and dFpVℓ(x) is already defined because
Fp should be just the usual q-Witt vector Frobenius in degree 0.

Note that there can be at most one Zrqs-linear map Fp d: q9Wm(R) ! q9Wm/pΩ
1
R/Z satisfying

(a) and (b), so the only non-trivial task is to show existence.

3.21. Lemma. — Let Vm := pimVℓ | ℓ prime factor of mq ⊆ q9Wm(R). Then there is a
well-defined Zrqs-linear map Fp d: Vm ! q9Wm/pΩ

1
R/Z given as in 3.20(b).

Proof. From Proposition 2.15, we get an exact sequence

à

ℓ1 ̸=ℓ2
q9Wm/ℓ1ℓ2(R)

(Vℓ1−Vℓ2 )−−−−−−!
à

ℓ

q9Wm/ℓ(R)
(Vℓ)
−−! Vm −! 0 ;

here ℓ, ℓ1, and ℓ2 range over all prime factors of m. Condition (b) above defines a unique Zrqs-
linear map

À

ℓ q9Wm/ℓ(R) ! q9Wm/pΩ
1
R/Z (here we also use injectivity of the Verschiebungen,

see Corollary 2.19) and we only have to check that
À

ℓ1 ̸=ℓ2 q9Wm/ℓ1ℓ2(R) maps into its kernel.
We can do this one summand at a time. So fix prime factors ℓ1 ̸= ℓ2. We distinguish two cases:

42



§3.3. Construction of Frobenii

Case 1: p /∈ tℓ1, ℓ2u. In this case, it’s enough to check that pFp d and ℓ1ℓ2Fp d are well-defined,
since p and ℓ1ℓ2 are coprime. For pFp d, we have to check that dFpVℓ1(Vℓ2(x)) = dFpVℓ2(Vℓ1(x))
holds for all x ∈ q9Wm/ℓ1ℓ2(R), which is clear. For ℓ1ℓ2Fp d, we have to check the condition
ℓ2Vℓ1(Fp dVℓ2(x)) = ℓ1Vℓ2(Fp dVℓ1(x)), which again is clear as both sides can be transformed
into Vℓ1ℓ2(Fp dx), using Lemma 3.2.

Case 2: p ∈ tℓ1, ℓ2u. Without restriction let p = ℓ1 and ℓ = ℓ2. This time we check that
pFp d and ℓFp d are well-defined. For pFp d, we must check that dFpVℓ(Vp(x)) = p dVℓ(x) holds
for all x ∈ q9Wm/ℓ1ℓ2(R), which follows from Fp ◦ Vℓ ◦ Vp = Fp ◦ Vp ◦ Vℓ = pVℓ. For ℓFp d,
we must check that Vℓ(Fp dVp(x)) = ℓdVℓ(x). But this follows from the inductive hypothesis,
which ensures that Fp dVp(x) = dx, and Lemma 3.2.

3.22. Construction. — We construct a well-defined map Fp d: q9Wm(R) ! q9Wm/pΩ
1
R/Z

as follows: By 2.13, every x ∈ q9Wm(R) can be uniquely written as

x =

φ(m)−1∑
i=0

qiτm(ri) + v ,

where φ(m) = degΦm(q) denotes Euler’s φ-function, ri ∈ R, and v ∈ Vm. We then define

Fp dx =

φ(m)−1∑
i=0

qiτm/p(ri)
p−1 dτm/p(ri) + Fp dv ,

where Fp dv is constructed as in Lemma 3.21.

3.23. Lemma. — The map Fp d: q9Wm(R) ! q9Wm/pΩ
˚
R/Z from Construction 3.22 is

additive.

Proof. It’s straightforward to see from Definition 3.13 that q-de Rham–Witt complexes commute
with filtered colimits in R. By writing R as a filtered colimit of finite type Z-algebras, we may
thus assume that R itself is of this form. In this case, Corollary 2.39 shows that q9Wm/p(R)
is of finite type over Z too and then Proposition 3.12(a) shows that q9Wm/pΩ

1
R/Z is a finitely

generated module over the noetherian ring q9Wm/p(R). For any finitely generated module M
over a noetherian Zrqs-algebra, the natural map

M −!M
”

1
p

ı

×
∏
ℓ ̸=p

M̂(p,qm/ℓ−1) ×M
”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

is injective; here ℓ ranges over all prime factors ̸= p of m.(3.3) In particular, we see that it
suffices to show additivity of our would-be derivation Fp d after applying each of the functors
(−)r1/ps, (−)^

(p,qm/ℓ−1)
, and (−)

“

1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

.
Proof after localisation at p. Since pFp d = dFp holds by construction, it’s clear that Fp d is

additive after inverting p.
(3.3)Here’s the technical argument: It’s clear that the map is injective after applying each of the functors

(−)r1/ps, (−)^

(p,qm/ℓ−1)
, and (−)

“

1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

. Thus, if K denotes the kernel of the map above, then
M !M/K will become injective after applying each of these functors, because then an injective map factors
through it. But all of these functors preserve exactness of the sequence 0 ! K ! M ! M/K ! 0: For the
localisations, this is clear, for the completions, we appeal to the fact that we’re working with finitely generated
modules over a noetherian ring. Hence K vanishes after each of these functors and Lemma 2.4 shows K „= 0.
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Proof after (p, qm/ℓ − 1)-adic completion. It suffices to show additivity of ℓFp d, since ℓ
becomes invertible after (p, qm/ℓ − 1)-adic completion. Furthermore, rℓsqm/pℓ becomes invertible
too. Hence the Frobenius Fℓ : q9Wm/pΩ

˚
R/Z ! q9Wm/pℓΩ

˚
R/Z, which we’ve already constructed,

induces an isomorphism (with inverse rℓs−1
qm/pℓ

Vℓ)

Fℓ :
`

q9Wm/pΩ
1
R/Z

˘^

(p,qm/ℓ−1)

„=−!
`

q9Wm/pℓΩ
1
R/Z

˘^

(p,qm/ℓ−1)
.

Therefore it suffices to show that ℓFℓ(Fp d) is additive. But we’ll show in Lemma 3.24 that
ℓFℓ(Fp d) = Fp dFℓ, where Fp on the right-hand side refers to Fp : q9Wm/ℓΩ

˚
R/Z ! q9Wm/pℓΩ

˚
R/Z,

which we’ve already constructed. Now it’s clear that Fp dFℓ is additive.
Proof after localisation at (qm/ℓ− 1) for all ℓ ̸= p. Let m = pαn, where α = vp(m). Observe

that
q9Wm/pΩ

˚
R/Z

”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

„= q9Wpα−1Ω˚
R/Z bZrqs,ψn Z

”

q, 1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

,

where ψn is the map that sends q 7! qn. Indeed, this can be shown as in the proof of
Proposition 2.15 by comparing universal properties (more precisely, by comparing the truncated
universal properties from Remark 3.14). So we can reduce to the case where m = pα. In
this case, the calculation from the proof of rLZ04, Proposition 1.3s can be carried over to our
situation (note that Langer–Zink’s calculation needs Lemma 3.4).

3.24. Lemma. — If ℓ ̸= p is another prime factor of m, then the map Fp d from Construc-
tion 3.22 satisfies

ℓFℓ(Fp dx) = Fp dFℓ(x)

for all x ∈ q9Wm(R), where Fℓ on the left-hand side refers to Fℓ : q9Wm/pΩ
˚
R/Z ! q9Wm/pℓΩ

˚
R/Z,

which has already been constructed by induction, and Fℓ on the right-hand side refers to the
q-Witt vector Frobenius, which we also already know how to construct.

Proof. By Construction 3.22, it suffices to prove ℓFℓ(Fp dx) = Fp dFℓ(x) in the following three
special cases:

Case 1: x = qiτm(r) for some 0 ⩽ i < φ(m) and some r ∈ R. Using Lemma 3.7, we can
transform the left-hand side as follows:

ℓFℓ
`

Fp d
`

qiτm/p(r)
˘˘

= qiℓFℓ
`

τm/p(r)
p−1 dτm(r)

˘

= qiτm/pℓ(r)
ℓ(p−1) dFℓτm/p(r) .

On the right-hand side, we use Fℓ(qiτm(r)) = qiτm/ℓ(r
ℓ), and then the F -Teichmüller condition

(τF ) shows

Fp d
`

qiτm/ℓ(r
ℓ)
˘

= qiτm/pℓ(r
ℓ)p−1 dτm/pℓ(r

ℓ) = qiτm/pℓ(r)
ℓ(p−1) dFℓτm/p(r) .

This finishes the proof in the first case.
Case 2: x = Vp(y) for some y ∈ q9Wm/p(R). In this case we have Fp dVp(y) = dy. So

the left-hand side simply becomes ℓFℓ dy = dFℓ(y). On the right-hand side we use that Fℓ
commutes with Vp to obtain Fp dFℓVp(y) = Fp dVpFℓ(y) = dFℓ(y), as required.

Case 3: x = Vℓ0(z) for some prime factor ℓ0 ̸= p of m (ℓ0 = ℓ is allowed) and some
z ∈ q9Wm/ℓ′(R). In this case, we prove ℓFℓ(Fp dx) = Fp dFℓ(x) after multiplication by p and
after multiplication by ℓ0, which is enough as p and ℓ0 are coprime. After multiplication
by p, the left-hand side becomes pℓFℓ(Fp dVℓ0(z)) = ℓFℓ(dFpVℓ0(z)) = dFpFℓVℓ0(z), whereas
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the right-hand side becomes pFp dFℓVℓ0(z) = dFpFℓVℓ0(z). These two are the same, since we
already know Fp ◦ Fℓ = Fℓ ◦ Fp as maps q9Wm(R) ! q9Wm/pℓ(R).

Now let’s see what happens after multiplication by ℓ0. By 3.20(b), ℓ0Fp dVℓ0(z) = Vℓ0(Fp dz).
Plugging this into the left-hand side, we obtain

ℓ0ℓFℓ
`

Fp dVℓ0(z)
˘

= ℓFℓVℓ0(Fp dz) =

#

ℓ2Fp dz if ℓ = ℓ0

ℓVℓ0Fℓ(Fp dz) if ℓ ̸= ℓ0
.

If ℓ = ℓ0, then also ℓ0Fp dFℓVℓ0(z) = ℓFp d(ℓz) = ℓ2Fp dz, in agreement with the formula above.
In the case ℓ ̸= ℓ0, we can do the following calculation (each step will be justified below):

ℓ0Fp dFℓVℓ0(z) = Fp
`

ℓ0 dVℓ0Fℓ(z)
˘

= Vℓ0Fp
`

dFℓ(z)
˘

= ℓVℓ0Fp(Fℓ dz) = ℓVℓ0Fℓ(Fp dz) ,

This again agrees with the formula above. In the first step, we use Fℓ ◦ Vℓ0 = Vℓ0 ◦ Fℓ as
maps q9Wm/ℓ0(R) ! q9Wm/ℓ(R). In the second step, we use Lemma 3.2 together with the fact
that Vℓ0 ◦ Fp = Fp ◦ Vℓ0 holds as maps q9Wm/ℓ0ℓΩ

˚
R ! q9Wm/pℓΩ

˚
R (we already know this by

induction). In the third step, we use Lemma 3.2. In the last step, we use Fp ◦ Fℓ = Fℓ ◦ Fp as
maps q9Wm/ℓ′Ω

˚
R/Z ! q9Wm/pℓ′ℓΩ

˚
R/Z (again by induction). This finishes the proof.

3.25. Lemma. — The map Fp d: q9Wm(R) ! q9Wm/pΩ
˚
R/Z from Construction 3.22, which

we know to be additive by Lemma 3.23, is Zrqs-linear.

Proof. We must show Fp d(qx) = qFp dx for all x ∈ q9Wm(R). By Lemma 3.21, we already know
this if x is contained in the ideal V ⊆ q9Wm(R) generated by the images of all Verschiebungen,
so it’s enough to check the case x = qiτm(r) for some r ∈ R and some 0 ⩽ i < φ(m). If
i < φ(m)−1, then everything is clear from Construction 3.22. In the case i = φ(m)−1 we may
then equivalently check that Fp d(Φm(q)τm(r)) = Φm(q)Fp dτm(r) = Φm(q)τm/p(r)

p−1 dτm/p(r).
Using Lemma 2.2, we can write Φm(q) as a Zrqs-linear combination of rℓsqm/ℓ , where ℓ ranges
through all prime factors of m (including ℓ = p). Since rℓsqm/ℓτm(r) = VℓFℓ(τm(r)) is contained
in V, where we already know Zrqs-linearity, it suffices to show

Fp d
`

VℓFℓ
`

τm(r)
˘˘

= rℓsqm/ℓτm/p(r)
p−1 dτm/p(r)

for all ℓ. This requires once again a case distinction.
Case 1: ℓ = p. In this case we have rpsqm/pτm/p(r)

p−1 dτm/p(r) = pτm/p(r)
p−1 dτm/p(r),

because both sides live in q9Wm/pΩ
˚
R/Z, which is (qm/p − 1)-torsion. Also, according to 3.20(b),

we have Fp dVp(τm/p(r)p) = d(τm/p(r)
p). Using that d is a derivation, we’re done.

Case 2: ℓ ̸= p. We use our standard trick and show the desired equation after multiplication
by p and by ℓ. After multiplication by p, we obtain

pFp
`

dVℓFℓ
`

τm(r)
˘˘

= dFpVℓFℓ
`

τm(r)
˘

= rℓsqm/ℓ dFpτm(r) = prℓsqm/ℓτm/p(r)
p−1 dτm/p(r) ,

as required. After multiplication by ℓ, 3.20(b) allows us to compute

ℓFp
`

dVℓFℓ
`

τm(r)
˘˘

= Vℓ
`

Fp dτm/ℓ(r
ℓ)
˘

= Vℓ
`

τm/pℓ(r)
ℓ(p−1) dτm/pℓ(r

ℓ)
˘

= ℓVℓ
`

τm/pℓ(r)
ℓ(p−1)τm/pℓ(r)

ℓ−1
˘

dVℓτm/pℓ(r)

= ℓVℓ
`

τm/pℓ(r)
ℓ(p−1)

˘

dτm/p(r)

= ℓrℓsqm/ℓτm/p(r)
p−1 dτm/p(r) .
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In the first line, we used the F -Teichmüller condition (τF ), which we already know for
Fp : q9Wm/ℓΩ

˚
R ! q9Wm/pℓΩ

˚
R. In the second line, we used that d is a derivation together

with the last condition from Definition 3.1(b). In the third line, we applied the V -Teichmüller
condition (τV ) for ω = τm/pℓ(r)

ℓ(p−1). Finally, in the fourth line we used the fact that
Vℓ(τm/pℓ(r)

ℓ(p−1)) = VℓFℓ(τm/p(r)
p−1) = rℓsqm/ℓτm/p(r)

p−1. We’re done.

3.26. Lemma. — The map Fp d: q9Wm(R) ! q9Wm/pΩ
1
R/Z from Construction 3.22 is a

Zrqs-linear derivation. If R is an A-algebra for some Λ-ring A, then Fp d extends uniquely to
an Arqs-linear derivation Fp d: q9Wm(R/A) ! q9Wm/pΩ

1
R/A.

Proof. To show that Fp d: q9Wm(R) ! q9Wm/pΩ
1
R/Z is a derivation, we use the same method

as in the proof of Lemma 3.23: By compatibility with filtered colimits, reduce to the case where
R is of finite type over Z. Then apply (−)r1/ps, (−)^

(p,qm/ℓ−1)
, or (−)

“

1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

:
After localisation at p, the fact that Fp d is a derivation follows from pFp d = dFp. After
(p, qm/ℓ− 1)-adic completion, we can use induction again. After localisation at (qm/ℓ− 1) for all
ℓ ̸= p, we can reduce to the case m = pα again. In this case, we can adapt the proof of rLZ04,
Proposition 1.3s; to make the adaptation, one needs to use that Fp d is Zrqs-linear, which we
know from Lemma 3.25.

Now assume R is an A-algebra. First observe that the composition

q9Wm(R)
Fp d
−−! q9Wm/pΩ

1
R/Z −! q9Wm/pΩ

1
R/A

kills all elements in the image of q9Wm(A) ! q9Wm(R). Indeed, according to the description
in 3.20, we only have to show dx = 0 for all x ∈ q9Wm/p(A) as well as Vℓ(Fp dy) = 0 for
all y ∈ q9Wm/ℓ(A) and all ℓ ̸= p. The latter follows from the inductive hypothesis, whereas
the former is ensured by the fact that q9Wm/pΩ

1
R/A is a quotient of Ω1

q9Wm/p(R/A)/Arqs
by

Proposition 3.12(a).
Thus, Fp d can be extended to an Arqs-linear derivation

q9Wm(R) bq9Wm(A) Arqs/(qm − 1) −! q9Wm/pΩ
1
R/A .

It remains to show that the ideal Um from Lemma 2.41 is killed. This is another straightforward
check. It’s enough to consider generators of the form Vℓ(xy) b 1 − Vℓ(x) b cm/ℓ(y) for ℓ | m
a prime factor, x ∈ q9Wm/ℓ(R), and y ∈ q9Wm/ℓ(A). If ℓ = p, then the map above sends this
generator to d(xy)− cm/ℓ(y) dx = 0, using that the differentials of q9Wm/pΩ

˚
R/A are Arqs-linear.

If ℓ ̸= p, we have multiply by p and by ℓ once again. After multiplication by p, we obtain
dFp(Vℓ(xy) b 1 − Vℓ(x) b cm/ℓ(y)), which vanishes because Vℓ(xy) b 1 − Vℓ(x) b cm/ℓ(y) = 0
holds already in q9Wm(R/A). After multiplication by ℓ, we get Vℓ(Fp d(xy)− cm/pℓ(y)Fp dx),
which vanishes by the inductive hypothesis.

3.27. Construction. — From Lemma 3.26 and the universal property of Kähler differentials
we get a q9Wm(R/A)-module map Fp : Ω

1
q9Wm(R/A)/Arqs

! q9Wm/pΩ
1
R/A. By the universal

property of exterior algebras, this extends uniquely to a map

Fp : Ω
˚
q9Wm(R/A)/Arqs −! q9Wm/pΩ

˚
R/A

of graded q9Wm(R/A)-algebras. We wish to show that this map factors uniquely over
q9WmΩ

˚
R/A. By revisiting the explicit construction, we see that we must check Fp(ξ) = 0,

Fp(dξ) = 0, Fp(η) = 0, and Fp(dη) = 0, where ξ and η are as in the proof of Proposition 3.12.
This will be proved in Lemmas 3.28 and 3.29 below.
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3.28. Lemma. — Fix a divisor d | m such that d ̸= m. Let j ⩾ 1, let I be a finite
indexing set, and let (wi, xi,1, . . . , xi,j)i∈I be a sequence of elements of q9Wd(R/A) such that
0 =

∑
i∈I wi dxi,1 ∧ · · · ∧ dxi,j holds in q9WdΩ

j
R/A. Put

ξ :=
∑
i∈I

Vm/d(wi) dVm/d(xi,1) ∧ · · · ∧ dVm/d(xi,j) .

Then Fp(ξ) = 0 and Fp(dξ) = 0.

Proof. Note that 3.20 tells us how to compute Fp(ξ), but in order to do that, we need to
distinguish whether or not p divides m/d. If p does divide m/d, we get

Fp(ξ) =
∑
i∈I

pVm/pd(wi) dVm/pd(xi,1) ∧ · · · ∧ dVm/pd(xi,j)

= pVm/pd

˜∑
i∈I

wi dxi,1 ∧ · · · ∧ dxi,j

¸

,

which vanishes because
∑

i∈I wi dxi,1 ∧ · · · ∧ dxi,j = 0 by assumption. If p doesn’t divide m/d,
we’ll show pjFp(ξ) = 0 and (m/d)jFp(ξ) = 0 instead. For the first one, we compute

pjFp(ξ) =
∑
i∈I

FpVm/d(wi) dFpVm/d(xi,1) ∧ · · · ∧ dFpVm/d(xi,j)

= Vm/d

˜∑
i∈I

Fp(wi) dFp(xi,1) ∧ · · · ∧ dFp(xi,j)

¸

= pjVm/dFp

˜∑
i∈I

wi dxi,1 ∧ · · · ∧ dxi,j

¸

,

which once again vanishes by our assumption
∑

i∈I wi dxi,1 ∧ · · · ∧ dxi,j = 0 plus the fact that
we already know Fp : q9WdΩ

˚
R/A ! q9Wd/pΩ

˚
R/A to be well-defined. Similarly,

´m

d

¯j
Fp(ξ) =

∑
i∈I

FpVm/d(wi)Vm/d(Fp dxi,1) ∧ · · · ∧ Vm/d(Fp dxi,j)

=
´m

d

¯j
Vm/dFp

˜∑
i∈I

wi dxi,1 ∧ · · · ∧ dxi,j

¸

.

This vanishes because of our assumption again, plus the fact that we already know the Frobenius
Fp : q9WdΩ

˚
R/A ! q9Wd/pΩ

˚
R/A to be well-defined. This finishes the proof that Fp(ξ) = 0. The

proof that Fp(dξ) = 0 is completely analogous and we’ll leave it to the reader.

3.29. Lemma. — Fix a divisor d | m such that d ̸= m. Let x ∈ q9Wd(R/A) and r ∈ R. Put

η := Vm/d(x) dτm(r)− Vm/d
`

xτd(r)
m/d−1

˘

dVm/dτd(r) .

Then Fp(η) = 0 and Fp(dη) = 0.
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Proof. Again, we have to distinguish whether or not m/d is divisible by p. If it is, we get

Fp(η) = pVm/pd(x)τm/p(r)
p−1 dτm/p(r)− pVm/pd

`

xτd(r)
m/d−1

˘

dVm/pdτd(r)

= pVm/pd
`

xτm/d(r)
(p−1)m/pd

˘

dτm/p(r)− pVm/pd
`

xτd(r)
m/d−1

˘

dVm/pdτd(r) .

In the second line we used Vm/pd(x)τm/p(r)
p−1 = Vm/pd(xFm/pd(τm/p(r)

p−1)), as we already
know that the conditions from Definition 3.6(c) are true for Fm/pd : q9Wm/pΩ

˚
R/A ! q9WdΩ

˚
R/A,

and Fm/pd(τm/p(r)p−1) = τm/d(r)
(p−1)m/pd. Now Fp(η) vanishes because the last line is precisely

p times the V -Teichmüller condition (τV ) for xτm/d(r)(p−1)m/pd and r.
Now assume p doesn’t divide m/d. Since η is automatically a (m/d)m/d−1-torsion element

in Ω1
q9Wm(R/A)/Arqs

, it suffices to show pFp(η) = 0 in this case. Note that p not dividing m/d
implies that p must divide d. We put m0 := m/p and d0 := d/p for short and compute

pFp(η) = FpVm/d(x) dFpτd(r)− FpVm/d
`

xτd(r)
m/d−1

˘

dFpVm/dτd(r)

= Vm0/d0

`

Fp(x)
˘

dτd0(r
p)− Vm0/d0

`

Fp(x)τd0(r
p)m0/d0−1

˘

dVm0/d0τd0(r
p) .

Now pFp(η) = 0 follows because the last line is precisely the V -Teichmüller condition (τV ) for
Fp(x) and rp. This proves Fp(η) = 0. The proof of Fp(dη) = 0 is similar and we leave it to the
reader once again.

With Lemmas 3.28 and 3.29 proved, Construction 3.27 finally gives a complete construction
of the Frobenius Fp. It remains to check that it has all necessary properties.

3.30. Lemma. — The map Fp : q9WmΩ
˚
R/A ! q9Wm/pΩ

˚
R/A from Construction 3.27 satisfies

all properties from Definition 3.6(c).

Proof. Compatibility with the q-Witt vector Frobenius holds by construction. For the chain
condition, we must check Fp ◦Fℓ = Fℓ ◦Fp for all prime factors ℓ ̸= p of m (in both compositions,
the left factor is defined via Construction 3.27 and the right factor is defined by induction).
This can be checked after multiplication by p and ℓ and then Lemma 3.24 takes care of the
essential case. The condition Fp ◦ d ◦ Vp = d holds again by construction.

It remains to prove Vp(ωFp(η)) = Vp(ω)η for all ω ∈ q9Wm/pΩ
˚
R and all η ∈ q9WmΩ

˚
R (which

also implies Vp ◦ Fp = rpsqm/p). This is easily reduced to checking Vp(xFp(dy)) = Vp(x) dy for
all x ∈ q9Wm/p(R) and y ∈ q9Wm(R) (that is, it suffices to do the case ω = x and η = dy).
Furthermore, it suffices to treat the three cases y = aτm(r) for some a ∈ Arqs and some r ∈ R,
y = Vp(z) for some z ∈ q9Wm/p(R), and y = Vℓ(w) for some prime factor ℓ ̸= p of m and some
w ∈ q9Wm/ℓ(R).

The case y = aτm(r) follows immediately from the V -Teichmüller condition (τV ). For
y = Vp(z), we compute Vp(xFp dVp(z)) = Vp(x dz) = Vp(x) dVp(z), as required. Finally, to
handle the case y = Vℓ(y), we have to multiply both sides by p and ℓ for one last time. After
multiplication by p, we obtain

pVp
`

xFp dVℓ(w)
˘

= Vp
`

x dFpVℓ(w)
˘

= Vp(x) dVpFpVℓ(w) = rpsqm/pVp(x) dVℓ(w) .

But Vp(x) is (qm/p − 1)-torsion, so rpsqm/pVp(x) dVℓ(w) = pVp(x) dVℓ(w), as required. After
multiplication by ℓ, we compute

ℓVp
`

xFp dVℓ(w)
˘

= Vp
`

xVℓ
`

Fp(dw)
˘˘

= VpVℓ
`

Fℓ(x)Fp(dw)
˘

= VℓVp
`

Fℓ(x)Fp(dw)
˘

.
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In the second equality we used the property for Fℓ : q9Wm/pΩ
˚
R/A ! q9Wm/pℓΩ

˚
R/A, which we

already know by induction. Furthermore, applying the inductive hypothesis to the Frobenius
Fp : q9Wm/ℓΩ

˚
R/A ! q9Wm/pℓΩ

˚
R/A, we get

VℓVp
`

Fℓ(x)Fp(dw)
˘

= Vℓ
`

VpFℓ(x) dw
˘

= VℓFℓVp(x) dVℓ(w) = rℓsqm/ℓVp(x) dVℓ(w) .

But dVℓ(w) is (qm/ℓ − 1)-torsion, so rℓsqm/ℓVp(x) dVℓ(w) = ℓVp(x) dVℓ(w), as required.

Proof of Proposition 3.17. It follows from Lemma 3.30 that for all prime factors p | m there
exists a Frobenius Fp : q9WmΩ

˚
R/A ! q9Wm/pΩ

˚
R/A satisfying all properties from Definition 3.6.

Furthermore, Fp satisfies the F -Teichmüller condition (τF ) by construction. This finishes
the inductive construction of Frobenii on (q9WmΩ

˚
R/A)m∈N, thus making it a q-FV -system of

differential-graded algebras over R.
For initiality, let (P ˚

m)m∈N be an arbitrary q-FV -system. By definition of (q9WmΩ
˚
R/A)m∈N,

there is a unique morphism
`

q9WmΩ
˚
R/A

˘

m∈N −! (P ˚
m)

of q-V -systems, so there can be at most one morphism of q-FV -systems, depending on whether
the above is compatible with the Frobenii. Let’s show that this is always the case. Since the
graded Arqs-algebra q9WmΩ

˚
R/A is generated by elements in degree 0 and 1 (because it is a

quotient of Ω˚
q9Wm(R/A)/Arqs

by Proposition 3.12(a)), it’s enough to check compatibility with
the Frobenii in degrees 0 and 1. In degree 0, this follows immediately from Definition 3.6(c). In
degree 1, consider the diagram

q9Wm(R/A) q9WmΩ
1
R/A q9Wm/pΩ

1
R/A

P 0
m P 1

m P 1
m/p

d Fp

d Fp

The left square commutes by construction and we must show that the right square commutes too.
It will be enough to show that the outer rectangle commutes, because then both ways of walking
around the diagram will determine the same Arqs-linear derivation q9Wm(R/A) ! P 1

m/p, hence
the same map Ω1

q9Wm(R/A)/Arqs
! P 1

m/p, and q9WmΩ
1
R/A is a quotient of Ω1

q9Wm(R/A)/Arqs
by

Proposition 3.12(a).
Commutativity of the outer rectangle can be checked ona set of Arqs-linear generators of

q9Wm(R/A), so we can reduce to the special cases of 3.20(a) and (b), where everything is clear.
This finishes the proof that (q9WmΩ

˚
R/A)m∈N is initial in CDGAlgq9FVR/A too.

§3.4. Étale base change
The goal of this subsection is to prove the following:

3.31. Proposition. — Let R! R′ be an étale morphism of A-algebras. Then the canonical
morphism (q9WmΩ

˚
R/A)m∈N ! (q9WmΩ

˚
R′/A)m∈N induces isomorphisms of differential-graded

q9Wm(R
′/A)-algebras

q9Wm(R
′/A) bq9Wm(R/A) q9WmΩ

˚
R/A

„=−! q9WmΩ
˚
R′/A .
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To prove this, first we have to construct the differential-graded algebra structures on
q9Wm(R

′/A) bq9Wm(R/A) q9WmΩ
˚
R/A. This is achieved by the following lemma.

3.32. Lemma. — Let P ˚ be a differential-graded Arqs-algebra concentrated in nonnegative
(cohomological) degrees and let P 0 ! S be an étale morphism of rings. Then the graded Arqs-
algebra S bP 0 P ˚ admits a unique differential-graded Arqs-algebra structure compatible with the
one on P ˚. Furthermore, this exhibits SbP 0 P ˚ as an initial object among all differential-graded
Arqs-algebras P ˚-algebras Q˚ equipped with a ring map S ! Q0.

Proof. This elegant proof is taken from rBLM21, Proposition 5.3.2s. Since P 0 ! S is étale, we
obtain S bP 0 Ω˚

P 0/Arqs
„= Ω˚

S/Arqs
as graded rings. Then

S bP 0 P ˚ „= Ω˚
S/Arqs bΩ˚

P0/Arqs

P ˚ ,

where Ω˚
P 0/Arqs

! P ˚ is the differential-graded morphism induced by the universal property
of the algebraic de Rham complex. Now the tensor product on the right-hand side of the
isomorphism above carries an obvious differential-graded structure, which also clearly satisfies
the desired universal property.

Proof of Proposition 3.31. We use induction on m and work with the truncated universal
properties from Remark 3.14, applied to the truncation set Tm of positive divisors of m. The
case m = 1 is trivial as q9W1Ω

˚
R/A

„= Ω˚
R/A by Proposition 3.12(a) and same for R′. So let

m > 1 and assume that the base change formula is true for all divisors d ̸= m of m. We equip
q9Wm(R

′/A) bq9Wm(R/A) q9WmΩ
˚
R/A with the differential-graded Arqs-algebra structure from

Lemma 3.32, using that q9Wm(R/A) ! q9Wm(R
′/A) is étale by Proposition 2.48. Furthermore,

q9Wd(R
′/A) bq9Wd(R/A) q9WdΩ

˚
R/A

„= q9Wm(R
′/A) bq9Wm(R/A) q9WdΩ

˚
R/A holds by the second

part of Proposition 2.48. Consequently, we can define

V ′
m/d : q9Wd(R

′/A) bq9Wd(R/A) q9WdΩ
˚
R/A −! q9Wm(R

′/A) bq9Wm(R/A) q9WmΩ
˚
R/A

to be the q9Wm(R
′/A)-linear extension of the Verschiebung Vm/d : q9WdΩ

˚
R/A ! q9WmΩ

˚
R/A.

If we can show that these V ′
m/d satisfy the conditions from Definition 3.1, then combining the

universal property of (q9WdΩ
˚
R/A)d∈Tm with the universal property of the differential-graded

structure on q9Wm(R
′/A) bq9Wm(R/A) q9WmΩ

˚
R/A obtained from Lemma 3.32 will show that

(q9Wd(R
′/A) bq9Wd(R/A) q9WdΩ

˚
R/A)d∈Tm satisfies the universal property from Remark 3.14. In

particular, it will immediately show q9Wm(R
′/A) bq9Wm(R/A) q9WmΩ

˚
R/A

„= q9WmΩ
˚
R′/A, thus

finishing the induction.
Most conditions from Definition 3.1 are straightforward to check, except for two tricky ones:

V ′
m/d(ω dη) = V ′

m/d(ω) dV
′
m/d(η) and the V -Teichmüller condition (τV ). Nevertheless, these can

be checked without doing any calculations. Let

F ′
m/d : q9Wm(R

′/A) bq9Wm(R/A) q9WmΩ
˚
R/A −! q9Wd(R

′/A) bq9Wd(R/A) q9WdΩ
˚
R/A

be the q9Wm(R
′/A)-linear extension of the Frobenius Fm/d. As noted in Remark 3.8, to

show the conditions for V ′
m/d, it’s enough to check that F ′

m/d satisfies the conditions from
Definition 3.6(c), which are clear except for F ′

m/d◦d◦V
′
m/d = d, and the F -Teichmüller condition

(τF ). Both of these are assertions about

F ′
m/d ◦ d: q9Wm(R

′/A) ! q9Wd(R
′/A) bq9Wd(R/A) q9WdΩ

˚
R/A .
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It would certainly be enough to show that F ′
m/d ◦ d agrees with the derivation Fm/d ◦

d: q9Wm(R
′/A) ! q9WdΩ

1
R′/A from the actual q-de Rham Witt complexes over R′. But

F ′
m/d ◦d is derivation as well, because d is derivation and F ′

m/d is a map of graded q9Wm(R
′/A)-

algebras. Now whether two derivations on q9Wm(R
′/A) agree can be checked after restriction

along the étale morphism q9Wm(R/A) ! q9Wm(R
′/A). By construction, Fm/d ◦d and F ′

m/d ◦d
agree on q9Wm(R/A), so we’re done.

3.33. Corollary. — For all positive integers m, the functor

q9WmΩ−/A : CRingA −! CAlg
`

D
`

Arqs
˘˘

sending an A-algebra R to the E∞-Arqs-algebra underlying the differential-graded Arqs-algebra
q9WmΩ

˚
R/A, is an étale sheaf.

Proof. It suffices to show that the underlying functor CRingA ! D(Zrqs) is an étale sheaf. By
writing q9WmΩR/A as a (derived) limit over its stupid truncations q9WmΩ

⩽i
R/A and passing to

graded pieces, it’s enough to show that q9WmΩ
i
−/A is an étale sheaf for every i ⩾ 0. Using

Proposition 3.31, this will be a consequence of the following assertion:
(⊠) Let R be an A-algebra and let M ∈ D(q9Wm(R/A)) be a bounded below complex. Then

the functor R′ 7! q9Wm(R
′/A) bL

q9Wm(R/A) M defines a D(Zrqs)-valued sheaf on the small
étale site of R.

To prove (⊠), first note that q9Wm(R
′/A) » q9Wm(R

′) bL
q9Wm(R) q9Wm(R/A) follows from

Lemma 2.50. So the functor under consideration agrees with R′ 7! q9Wm(R
′) bL

q9Wm(R)M . We
use induction on m. For m = 1, we can write R′ bL

RM » limi⩾0R
′ bL

R τ⩽iM due to connectivity
reasons to reduce to the case where M is bounded, and then further to the case where M is
concentrated in a single degree. In this case we simply obtain a quasi-coherent sheaf on the
small étale site of R, which has vanishing higher cohomology rSGA4/2, Corollaire VII.4.4s and
is therefore also a sheaf with values in the ∞-category D(Zrqs).

For m > 1, we use Proposition 2.15: It’s enough to prove that R′ 7! R′rζms bL
q9Wm(R) M

and R′ 7! q9Wd(R
′)bL

q9Wm(R)M , for d ̸= m a divisor of m, are D(Zrqs)-valued sheaves. For the
latter, we can simply apply the inductive hypothesis to q9Wd(R) bL

q9Wm(R) M ∈ D(q9Wd(R)).
To see that the former functor constitutes a sheaf, we can use a similar argument as in the
m = 1 case, applied to Rrζms bL

q9Wm(R) M ∈ D(Rrζms).

3.34. Corollary. — For any A-algebra R and any positive integer m, the ghost maps from
3.15 induce isomorphisms of differential-graded-Arqs-algebras

q9WmΩ
˚
R/A

“

1
m

‰ „=−!
∏
d|m

´

Ω˚
R/A bA,ψd A

“

1
m , ζd

‰

¯

Proof. We’ll compare universal properties. Using Corollary 2.20(a) and the universal property
from Definition 2.42, it’s clear that q9Wm(Rr1/ms/A) „= q9Wm(R/A)r1/ms. Combined with
Proposition 3.31, we obtain

q9WdΩ
˚
R/A

“

1
m

‰

„= q9Wd

`

R
“

1
m

‰

/A
˘

bq9Wd(R/A) q9WdΩ
˚
R/A

„= q9WdΩ
˚
Rr1/ms/A

for all d | m. Thus, if Tm denotes the truncation set of positive divisors of m, then
(q9WdΩ

˚
R/Ar1/ms)d∈Tm is the initial Tm-truncated q-V -system over Rr1/ms in the sense of
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Remark 3.14. We will show that
`∏

e|d(Ω
˚
R/A bA,ψe Ar1/m, ζes)

˘

d∈Tm , with its Tm-truncated
q-V -system structure from 3.15, is initial too.

To prove this, first observe that the relative q-Witt vector ghost maps induce isomorphisms

(ghd/e)e|d : q9Wd

`

R
“

1
m

‰

/A
˘ „=−!

∏
e|d

´

R bA,ψe A
“

1
m , ζe

‰

¯

Indeed, the canonical map q9Wm(Rr1/ms) bq9Wm(A) Arqs/(qm − 1) ! q9Wd(Rr1/ms/A) is
surjective by Lemma 2.41, but according to Example 2.38 we also have an isomorphism
q9Wd(Rr1/ms) bq9Wm(A) Arqs/(qm − 1) „=

∏
e|d(R bA,ψe A)r1/m, ζes, and so it is a left inverse

of (ghd/e)d|e.
Now let (P ˚

d )d∈Tm be an arbitrary Tm-truncated q-V -system over Rr1/ms. Observe that
for all d | m, the decomposition Ar1/m, qs/(qd − 1) „=

∏
e|dAr1/m, ζes induces a similar

decomposition P ˚
d

„=
∏
e|d P

˚
d,e, where P ˚

d,e is a differential-graded Arζes-algebra. Furthermore,
the q9Wd(Rr1/ms/A)-algebra structure on P 0

d plus the ghost map isomorphism above induce
(R bA,ψe A)r1/m, ζes-algebra structures on P 0

d,e for all e | d. Thus, we obtain canonical
morphisms ∏

e|d

´

Ω˚
R/A bA,ψe A

“

1
m , ζe

‰

¯

−!
∏
e|d

P ˚
d,e .

By Lemma 3.2, these are automatically compatible with the Verschiebungen. This proves that
`∏

e|d(Ω
˚
R/A bA,ψe Ar1/m, ζes)

˘

d∈Tm satisfies the required universal property.
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§4. q-de Rham Witt complexes in the smooth case
Fix a Λ-ring A which is perfectly covered in the sense of Remark 2.47. The most important
special case is A = Z. In this section we’ll study q9WmΩ

˚
R/A for smooth A-algebras R. Our

goal will be to prove Theorem 1.7—and in fact, the more general version Theorem 4.27—as
well as the following two propositions.

4.1. Proposition. — Let R be smooth over A. Then q9WmΩ
˚
R/A is degree-wise Z-torsion-free

for all m ∈ N. In particular, (q9WmΩ
˚
R/A)m∈N is also an initial object of (CDGAlgq9VR/A)

tors9free.

4.2. Proposition. — Let R be smooth over A and let p be a prime. Then for every exponent α
there exists an equivalence of p-complete E∞-Arqs-algebras

`

ΩR/A bL
A,ψpα Arqs/(qp

α − 1)
˘^

p

»
−!

`

q9WpαΩR/A
˘^

p
,

functorial in smooth A-algebras R. More generally, if m = pαn, where n is coprime to p, then
there exists an equivalence of p-complete E∞-Arqs-algebras∏

d|n

´

ΩR/A bL
A,ψpαd Arqs/Φd(q

pα)
¯^

p

»
−!

`

q9WmΩR/A
˘^

p
,

functorial in smooth A-algebras R.

4.3. Battle plan. — Let us explain the logical structure of this section, since it’ll be not
entirely obvious. We’ll prove Theorem 1.7, Proposition 4.1, and Proposition 4.2 first in the case
where m = pα is a prime power; the general case can be reduced to this by standard arguments
(as we’ll see). To handle the special case m = pα, we’ll prove all three results at once using an
induction on α. More precisely, we’ll show the following four assertions using induction on α:
(aα) If R is smooth over A, then the differential-graded Arqs-algebra q9WpαΩ

˚
R is degree-wise

p-torsion-free.
(bα) Theorem 1.7, and more generally Theorem 4.27 that we’ll state below, are true after

p-completion for m = pα.
(cα) Proposition 4.2 is true for m = pα.
(dα) Suppose R „= ArT1, . . . , Tns is a polynomial ring over A. If ξ ∈ q9WpαΩ

i
R/A satisfies dξ ≡ 0

mod p, then there exist ω ∈ q9Wpα+1ΩiR/A and η ∈ q9WpαΩ
i
R/A satisfying

ξ = Fp(ω) + pη .

Assertion (d−1) is vacuously true. To carry out the inductive step, we’ll prove the implications
(dα−1) ⇒ (aα) ⇒ (bα) ⇒ (cα) ⇒ (dα). The implication (dα−1) ⇒ (aα) will be shown in §4.1.
After introducing the q-Hodge complex and proving some first properties in §§4.2–4.3, we’ll
prove the implications (bα) ⇒ (cα) ⇒ (dα) in §4.4. Finally, in §4.5, we’ll deduce the global
cases of Theorems 1.7 and 4.27 as well as Propositions 4.1 and 4.2.

For ease of notation, throughout the induction we’ll denote the pth Adams operation
ψp : A! A for the fixed prime p instead by ϕ : A! A.

4.4. Remark. — Suppose A = Z and R is smooth over Z. On first glance, it seems Corol-
lary 3.34 and Proposition 4.2 could be combined to show q9WmΩR/Z » ΩR/ZbL

ZZrqs/(qm−1) as
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E∞-Zrqs-algebras. Indeed, from Corollary 3.34 and Zr1/m, qs/(qm−1) „=
∏
d|m Zr1/m, qs/Φd(q)

we get
q9WmΩ

˚
R/Z

“

1
m

‰

„= Ω˚
R/Z bZ Z

“

1
m , q

‰

/(qm − 1) .

Similarly, in Proposition 4.2 the Adams operations ψpαd become trivial and we obtain
`

q9WmΩR/Z
˘^

p
»
`

ΩR/Z bL
Z Zrqs/(qm − 1)

˘^

p
.

But these two equivalences are usually not compatible! We can already see this in the case
where R is étale over Z: By Corollary 2.52, the existence of an equivalence E∞-Zrqs-algebra
equivalence between q9WmΩR » q9Wm(R) and ΩR/Z bL

Z Zrqs/(qm − 1) » Rrqs/(qm − 1) is
obstructed by the existence of a Λm-structure on R.

Upon closer examination, this also explains why Corollary 3.34 and Proposition 4.2 cannot
be combined to construct an isomorphism q9Wm(R) „= Rrqs/(qm − 1) in the case where R is
étale over Z: In this case, q9Wm(R)

^
p » R̂prqs/(qm − 1) comes from Corollary 2.37, noticing

that q9Wm(R)
^
p » q9Wm(R̂p) by Corollary 2.24 and that R̂p carries a unique Frobenius lift

ϕp : R̂p ! R̂p, which can be trivially upgraded to a perfect Λ-structure by declaring the other
Adams operations to be the identity. On the other hand, as explained in Example 2.38, the
isomorphism q9Wm(R)r1/ms „= Rr1/m, qs/(qm−1) comes from the trivial perfect Λm-structure
on Rr1/ms, in which all Adams operations are the identity. So the two isomorphisms are
incompatible, unless ϕp : R̂p ! R̂p happens to be restrict to a Frobenius lift on R.

In Corollary 4.37 we’ll continue these considerations for arbitrary perfectly covered Λ-rings
A and arbitrary smooth A-algebras R.

§4.1. p-Torsion freeness of q-de Rham–Witt complexes

In this subsection we’ll prove the implication (dα−1) ⇒ (aα) of our battle plan 4.3. This needs
a preparatory lemma.

4.5. Lemma. — The subset V˚
pα := imVp + imdVp ⊆ q9WpαΩ

˚
R/A is a differential-graded

ideal and the ghost map gh1 from 3.15 induces a functorial isomorphism

gh1 : q9WpαΩ
˚
R/A/V

˚
pα

„=−! Ω˚
R/A bA,ϕα Arζpαs .

Proof. It’s clear that V˚
pα is closed under d. To show that it is a graded ideal, choose homogeneous

elements ω ∈ q9Wpα−1ΩiR/A and η ∈ q9WpαΩ
j
R/A. We compute Vp(ω)η = V (ωFp(η)) and

dVp(ω)η = d
`

Vp(ω)η
˘

− (−1)iVp(ω) dη = dVp
`

ωFp(η)
˘

− (−1)iV
`

ωFp(dη)
˘

,

using the condition from Definition 3.6(c). This proves that V˚
pα is a graded ideal.

To prove the second assertion, note that (0, . . . , 0, q9WpαΩ
˚
R/A/V

˚
pα) is initial among all

t1, p, p2, . . . , pαu-truncated q-V -systems (P ˚
1 , P

˚
p , P

˚
p2 , . . . , P

˚
pα) satisfying P ˚

pi
= 0 for all i < α.

By inspection, such a system is nothing else but a differential-graded Arqs-algebra P ˚
pα together

with a q9Wpα(R)/ imVpα-algebra structure on P 0
pα ; all the extra structure and conditions become

trivial. Now q9Wpα(R)/ imVp „= R bA,ϕα Arζpαs by 2.44, hence, according to the universal
property of the de Rham complex, the initial t1, p, p2, . . . , pαu-truncated q-V -system is also
given by (0, . . . , 0,Ω˚

R/A bA,ϕα Arζpαs). This finishes the proof.
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Proof of (dα−1) ⇒ (aα). Assume first that R „= ArT1, . . . , Tns is a polynomial ring. Suppose
ξ ∈ q9WpαΩ

i
R/A satisfies pξ = 0. By Lemma 4.5, the quotient q9WpαΩ

˚
R/V˚

pα is isomorphic to
Ω˚
R/A bA,ϕα Arζpαs, which is degree-wise p-torsion-free. Indeed, our assumptions imply that A

is p-torsion free (because its faithfully flat cover A∞ is p-torsion free, as is any perfect Λ-ring)
and then Ω˚

R/A bA,ϕα A is degree-wise projective over R bA,ϕα A, which is smooth over A and
thus p-torsion free as well.

Hence pξ = 0 implies ξ ∈ V˚
pα . So write ξ = Vp(ξ0) + dVp(ξ1) for some ξ0 ∈ q9Wpα−1ΩiR/A

and ξ1 ∈ q9Wpα−1Ωi−1
R/A. Since Vp ◦ d = p(d ◦ Vp) by Lemma 3.2, we can rewrite our assumption

pξ = 0 as Vp(pξ0 + dξ1) = 0. Note that Vp : q9Wpα−1Ω˚
R/A ! q9WpαΩ

˚
R/A is injective, because

Fp ◦ Vp = p and q9Wpα−1Ω˚
R/A is degree-wise p-torsion-free by the inductive hypothesis. Thus

pξ0 + dξ1 = 0.
Applying (cα−1) shows that we can write ξ1 = Fp(ω) + pη for some ω ∈ q9WpαΩ

i−1
R/A and

η ∈ q9Wpα−1Ωi−1
R/A. Then dξ1 = pFp(dω) + p dη and so our assumption pξ0 + dξ1 = 0 implies

ξ0 = −Fp(dω)− dη by p-torsion-freeness of q9Wpα−1Ω˚
R/A. We conclude

ξ = Vp(ξ0) + dVp(ξ1) = Vp
`

−Fp(dω)− dη
˘

+ dVp
`

Fp(ω) + pη
˘

= −Φpα(q) dω − Vp(dη) + Φpα(q) dω + p dVp(η)

= 0 ,

using Vp ◦ d = p(d ◦ Vp), which holds by Lemma 3.2, as well as Vp ◦ Fp = Φpα(q), which holds
by Definition 3.6(c). This finishes the proof in the polynomial ring case.

Now let R be an arbitrary smooth A-algebra. Fix a degree i; we’ve seen in the proof
of Corollary 3.33 that q9WmΩ

i
−/A is an étale sheaf with values in the ∞-category D(Arqs).

Then it’s also a sheaf in the ordinary category of Arqs-modules. Hence the p-torsion part
is an étale sheaf as well, since it can be written as the kernel of the multiplication map
p : q9WmΩ

i
−/A ! q9WmΩ

i
−/A. Since smooth A-algebras are étale-locally polynomial rings, we

conclude that the p-torsion part of q9WmΩ
i
R/A must be trivial, as desired.

In a similar way, one can show the following technical result.

4.6. Lemma. — For all smooth A-algebras R and all m ∈ N, the relative q-de Rham–Witt
complex q9WmΩ

˚
R/A has degree-wise bounded (q − 1)∞-torsion. In particular, for every degree i,

the underived and derived (q − 1)-completions of q9WmΩ
i
R/A agree.

Proof. If A = Z and R = ZrT1, . . . , Tns, then Corollary 2.39 and Proposition 3.12(a) imply
that q9WmΩ

˚
R/Z is a complex of finitely generated modules over the noetherian ring q9Wm(R)

and the assertion is clear. If A is an arbitrary Λ-ring (with the assumption that the morphism
A! A∞ into its colimit perfection is faithfully flat), and R = ArT1, . . . , Tns, then

q9WmΩ
˚
ArT1,...,Tns/A

„= q9WmΩ
˚
ZrT1,...,Tns/Z bZ A

holds by Lemma 3.16. Since our assumption implies that A is flat over Z, we get bounded
(q− 1)∞-torsion in this case as well (with the same bound as in the case A = Z). Finally, using
étale descent as in the proof of (dα−1) ⇒ (aα) above, we get that q9WmΩ

˚
R/A has bounded

(q − 1)∞-torsion for arbitrary smooth A-algebras R (still with the same bound as in the case
A = Z, R = ZrT1, . . . , Tns).
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§4.2. The q-Hodge complex I: Additive Structure
In the introduction §1, we’ve only sketched the construction of the q-de Rham complex and the
q-Hodge complex of a framed smooth Z-algebra (R,□). So let’s do that now again, both in
more detail and in the relative setting.

4.7. The q-de Rham and the q-Hodge complex. — Let R be smooth over A and
suppose there exists an étale morphism □ : ArT1, . . . , Tns ! R. For all i = 1, . . . , n let
γi : ArT1, . . . , TnsJq−1K ! ArT1, . . . , TnsJq−1K, be the A-algebra morphism that sends Ti 7! qTi
and leaves the other variables fixed. Observe that γi is the identity modulo q − 1, that □
induces a (q − 1)-completely étale morphism ArT1, . . . , TnsJq − 1K ! RJq − 1K (see 1.10 for the
terminology), and that RJq − 1K ! R is a (q − 1)-complete pro-infinitesimal thickening. Hence
there exists a unique dashed lift in the solid diagram

ArT1, . . . , TnsJq − 1K RJq − 1K

RJq − 1K R

□

γi

∃!

This lift will also be denoted γi. By lifting against RJq − 1K/(q − 1)Ti ! R instead, which is
still a (q − 1)-complete pro-infinitesimal thickening, we see that γi is not only congruent to
the identity modulo q − 1, but also modulo (q − 1)Ti. This allow us define algebraic versions
q9∂i : RJq − 1K ! RJq − 1K of Jackson’s q-derivatives from 1.4 using the formula

q9∂if :=
γi(f)− f

qTi − Ti

for i = 1, . . . , n. Note that q9∂i and q9∂j commute for all i and j. Indeed, this reduces to the
same assertion for γi and γj , which follows once again by an infinitesimal lifting argument. We
may thus construct the q-de Rham complex of (R,□) as the Koszul complex of the commuting
AJq − 1K-module endomorphisms q9∂1, . . . , q9∂n:

q9Ω˚
R/A,□ :=

´

RJq − 1K q9∇
−−! Ω1

R/AJq − 1K q9∇
−−! · · · q9∇

−−! ΩnR/AJq − 1K
¯

.

Similarly, the q-Hodge complex of (R,□) is the Koszul complex of (q − 1) q9∂1, . . . , (q − 1) q9∂n:

q9Hdg˚
R/A,□ :=

ˆ

RJq − 1K
(q−1) q9∇
−−−−−−! Ω1

R/AJq − 1K
(q−1) q9∇
−−−−−−! · · · (q−1) q9∇

−−−−−−! ΩnR/AJq − 1K
˙

.

4.8. Non-commutative multiplicative structure. — It’s straightforward to check that
the partial q-derivative q9∂i satisfies the q-Leibniz rule q9∂i(fg) = f q9∂ig + γi(g) q9∂if . This
allows us to equip the q-de Rham complex with a non-commutative differential-graded algebra
structures as follows: For homogeneous elements ω = f dTi1 ∧ · · · ∧ dTik ∈ q9ΩkR/A,□ and
η = g dTj1 ∧ · · · ∧ dTjℓ ∈ ΩℓR/A,□ we put

ω ∧ η := fγi1
`

γi2(· · · γik(g) · · · )
˘

dTi1 ∧ · · · ∧ dTik ∧ dTj1 ∧ · · · ∧ dTjℓ .

More succinctly, we use the good old wedge product and impose the additional non-commutative
rule dTi ∧ f := γi(f) ∧ dTi for all f ∈ RJq − 1K and all i = 1, . . . , d. From the q-Leibniz rule,
we easily get q9∇(ω ∧ η) = q9∇(ω) ∧ η + (−1)kω ∧ q9∇(η), so this multiplication does indeed
define a differential-graded AJq − 1K-algebra structure on q9Ω˚

R/A,□. The same definition also
works for the q-Hodge complex q9Hdg˚

R/A,□.
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Our eventual goal is to compute the cohomology H˚(q9Hdg˚
R/A,□/(q

m − 1)), including its
multiplicative structure coming from 4.8. As a preparation, we’ll now determine the additive
structure of H˚((q9Hdg˚

R/A,□)
^
p /(qp

α − 1)) as an ÂpJq − 1K-module.(4.1) Our strategy will be to
construct a certain decomposition of (q9Hdg˚

R,□)
^
p /(qp

n − 1) according to a Frobenius lift on
R̂p. This is an old trick, going back (at least) to Katz’s proof of the Cartier isomorphism in
rKat70, Theorem (7.2)s.

4.9. The Frobenius lift. — The p-completion Âp⟨T1, . . . , Tn⟩ := (ArT1, . . . , Tns)^p can be
equipped with a δ-structure in which the Frobenius ϕ□ is given by the Frobenius ϕ = ψp on
A and ϕ□(Ti) := T pi . Since □ : Âp⟨T1, . . . , Tn⟩ ! R̂p is p-completely étale, ϕ□ admits a unique
extension to a Frobenius lift on R̂p, which we still denote ϕ□ : R̂p ! R̂p by abuse of notation.
We observe that ϕ□ is injective. Indeed, ϕ□ is injective modulo p, since R/p is reduced: It’s
a smooth A/p-algebra, and A/p must be reduced because it admits a faithfully flat cover
A/p! A∞/p by a perfect Fp-algebra. Hence every x ∈ R̂p with ϕ□(x) = 0 must be divisible
by p; say x = px′. But then 0 = ϕ□(px

′) = pϕ□(x
′) implies ϕ□(x′) = 0. Iterating this argument

shows that x is divisible by p arbitrarily many times. But R̂p is p-complete and thus p-adically
separated, so x = 0, as required.

4.10. The Frobenius decomposition I. — For every α ⩾ 0, let

R̂(α)
p :=

´

ϕα□(R̂p) b
ϕα(Âp)

Âp

¯^

p

(as usual, it doesn’t matter whether we complete in the derived or underived sense, as can be
seen by base change to A∞). We claim that the canonical map R̂

(α)
p ! R̂p exhibits R̂p as a

free module over R̂(α)
p , with a basis given by T v11 · · ·T vnn for all multi-indices v = (v1, . . . , vn)

satisfying 0 ⩽ vi ⩽ pα−1. To see why this is true, first observe that the corresponding assertion
for Âp⟨T1, . . . , Tn⟩ is true for obvious reasons. Hence it suffices to show that

Âp⟨T1, . . . , Tn⟩ R̂p

Âp⟨T1, . . . , Tn⟩ R̂p

≓ϕα□ ϕα□

is a derived pushout square of rings. But both the derived pushout and R̂p are derived p-
complete, so by the derived Nakayama lemma it’s enough to check that we get a derived pushout
square after applying − bL

Zp Fp everywhere. This is proved in rStacks, Tag 0EBSs.
Now, for every multi-index v = (v1, . . . , vn) satisfying 0 ⩽ vi ⩽ pα − 1 for all i, we let

(q9Hdg˚,v
R/A,□)

^
p ⊆ (q9Hdg˚

R/A,□)
^
p be the free graded R̂(α)

p Jq− 1K-module with basis the elements

∏
i∈I

T vii
∧
j∈J

T
vj−1
j dTj

(4.1)Observe that our assumption on the existence of a faithfully flat map A! A∞ into a perfect Λ-ring implies
that A and R are p-torsionfree, so it doesn’t matter whether we interpret Âp and R̂p as the derived or the
underived completions. Similarly, q9Hdg˚

R/A,□ is degree-wise p-torsion free, so it’s derived p-completion agrees
with the degree-wise underived completion.
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for all disjoint decompositions I ⊔ J = t1, . . . , nu. If vj = 0 for some j, we use the convention
that T vj−1

j dTj := T p
α−1

j dTj . Then we obtain a decomposition

`

q9Hdg˚
R/A,□

˘^

p
„=
à

v

`

q9Hdg˚,v
R/A,□

˘^

p

as graded R̂
(α)
p Jq − 1K-modules.

4.11. Lemma. — The decomposition from 4.10 is not just a decomposition underlying graded
modules, but a decomposition of complexes. Furthermore, for the induced decomposition on
(q9Hdg˚

R/A,□)/(q
pα−1), each piece (q9Hdg˚,v

R/A,□)
^
p /(qp

α−1) is a complex of R̂(α)
p Jq−1K-modules.

Proof. To show that the differentials (q−1) q9∇ of (q9HdgR/A,□)
^
p respect the decomposition, it

will be enough to show that γi : R̂pJq− 1K ! R̂pJq− 1K respects the decomposition of R̂pJq− 1K
as a free R̂(α)

p Jq−1K-module with basis T v11 · · ·T vnn for all multi-indices v = (v1, . . . , vn) as above.
To show this, extend ϕ□ to a Frobenius lift ϕ□ : R̂pJq − 1K ! R̂pJq − 1K by putting ϕ□(q) := qp.
It will certainly be enough to show that ϕ□ and γi commute. It’s straightforward to check
that they commute when restricted Âp⟨T1, . . . , Tn⟩Jq− 1K. Furthermore, they commute modulo
(p, q − 1), because γi is the identity modulo q − 1. Hence the desired commutativity follows
from uniqueness of infinitesimal lifting for (p, q − 1)-completely étale morphisms.

To show that each piece (q9Hdg˚,v
R,□)

^
p /(qp

α − 1) is R̂(α)
p Jq − 1K-linear, it will be enough to

show that
(q − 1) q9∇ : R̂pJq − 1K −! (Ω1

R/A)
^
p Jq − 1K

is divisible by qpα − 1 when restricted to R̂(α)
p Jq − 1K. This follows easily from the fact that γi

and ϕ□ commute, as we’ve observed above.

4.12. The Frobenius decomposition II. — We ’ll now further simplify the Frobenius
decomposition from 4.10, adapting the arguments in the proof of rKat70, Theorem (7.2)s. Using
Lemma 4.11, we can write

`

q9Hdg˚,v
R/A,□

˘^

p
/(qp

α − 1) „= R̂(α)
p Jq − 1K bZpJq−1K K

˚,v
α (n) ,

where K˚,v
α (n) is the complex of free ZpJq−1K/(qpα−1)-modules with basis given by the elements

from 4.10 and differentials given by (q − 1) q9∇. The complex K˚,v
α (n) can be decomposed

into a tensor product K˚,v
α (n) „= K˚,v1

α (1) bZpJq−1K · · · bZpJq−1K K
˚,vd
α (1), where K˚,vi

α (1) is the
complex

K˚,vi
α (1) :=

ˆ

T vii · ZpJq − 1K/(qp
α − 1)

(q−1) q9∇
−−−−−−! T vi−1

i dTi · ZpJq − 1K/(qp
α − 1)

˙

concentrated in degrees 0 and 1. As in 4.10, we use the convention that T vi−1
i dTi := T p

α−1
i dTi

if vi = 0. If vi ⩾ 1, then we can write vi = pev′i, where e is the exponent of p in the prime
factorisation of vi. The differential (q − 1) q9∇ of K˚,vi(1) sends the generator T vii in degree
zero to

(q − 1) q9∇(T vii ) = (qvi − 1)T vi−1
i dTi = rv′isqpe (q

pe − 1)T vi−1
i dTi .
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Now observe that rv′isqpe is a unit in ZpJq − 1K/(qpn − 1). Indeed, it can be written as a sum of
v′i, which is a unit, and a multiple of the topologically nilpotent element q − 1. Hence K˚,vi(1)
is isomorphic to the complex K˚

α,e given by

K˚
α,e :=

ˆ

ZpJq − 1K/(qp
α − 1)

(qp
e−1)

−−−−−! ZpJq − 1K/(qp
α − 1)

˙

,

again concentrated in degrees 0 and 1. If vi = 0, then similarly K˚,0(1) „= K˚
α,α, where the

differential of K˚
α,α is multiplication with qp

α − 1, hence zero.
Summarising, we see that K˚,v(n) can be written as a tensor product of complexes of the

form K˚
n,ei for some 0 ⩽ e1, . . . , en ⩽ α. Fortunately, such a tensor product is easy to compute:

4.13. Lemma. — If e1 ⩾ e2 ⩾ 0, then there is an isomorphism of complexes of ZpJq − 1K-
modules

K˚
α,e1 bZpJq−1K K

˚
α,e2

„= K˚
α,e2r−1s ‘K˚

α,e2 .

Proof. An explicit isomorphism K˚
α,e1 bZpJq−1K K

˚
α,e2

„=−! K˚
α,e2r−1s ‘ K˚

α,e2 is given by the
following commutative diagram:

ZpJq − 1K/(qp
α − 1)

`

ZpJq − 1K/(qp
α − 1)

˘‘2 ZpJq − 1K/(qp
α − 1)

ZpJq − 1K/(qp
α − 1)

`

ZpJq − 1K/(qp
α − 1)

˘‘2 ZpJq − 1K/(qp
α − 1)

˜

qp
e1−1

qp
e2−1

¸

p−(qp
e2−1), qp

e1−1q

˜

0

qp
e2−1

¸

p−(qp
e2−1), 0q

Here the vertical arrow in the middle sends (a, b) 7!
´

a− qp
e1−1

qp
e2−1

b, b
¯

.

4.14. Lemma. — Let v = (v1, . . . , vn) be a multi-index as in 4.10, and let’s write vi = peiv′i,
where ei is the exponent of p in the prime factorisation of vi as in 4.12 (with the convention that
ei := α in the case vi = 0). If e := minte1, . . . , edu, then there is an isomorphism of complexes
of ÂpJq − 1K-modules

`

q9Hdg˚,v
R/A,□

˘^

p
/(qp

α − 1) „= R̂(α)
p Jq − 1K bZpJq−1K

˜

n−1
à

k=0

`

K˚
α,er−ks

˘‘pn−1
k q

¸

.

Proof. Use 4.12, Lemma 4.13, and induction on n.

4.15. Corollary. — For all α ⩾ 0, the cohomology groups H˚((q9Hdg˚
R/A,□)

^
p /(qp

α − 1)) are
p-torsion free.

Proof. By Lemma 4.14, each cohomology group of (q9Hdg˚
R/A,□)

^
p /(qp

α − 1) is a direct sum of
terms of the form

R̂(α)
p Jq − 1K bZpJq−1K H

0(K˚
α,e) or R̂(α)

p Jq − 1K bZpJq−1K H
1(K˚

α,e)

for some e ⩾ 1. But H0(K˚
α,e) = rpα−esqpeZpJq − 1K/(qpα − 1) „= ZpJq − 1K/(qpe − 1) and also

H1(K˚
α,e)

„= ZpJq − 1K/(qpe − 1), so everything is indeed p-torsion free.
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§4.3. The q-Hodge complex II: Multiplicative Structure

Our goal in this subsection is to equip the cohomologies (H˚(q9Hdg˚
R/A,□/(q

m−1)))m∈N with the
structure of a q-FV -system of differential-graded A-algebras over R as defined in Definition 3.6.
This will allow us to formulate a relative version of Theorem 1.7, which will eventually be
proved in §§4.4–4.5. Throughout, we fix a framed smooth A-algebra (R,□) and use the
shorthand H˚

R/A,□(m) := H˚(q9Hdg˚
R/A,□/(q

m − 1)). Let’s start constructing the various pieces
of structure.

4.16. Differential-graded algebra structure. — We know from 4.8 that q9Hdg˚
R/A,□ can

be equipped with a non-commutative differential-graded Arqs-algebra structure. This induces
a graded algebra structure on H˚

R/A,□(m), which turns out to be commutative as we’ll see in
Lemma 4.17 below.

This leaves us with the question of how to define the differentials. We’ll use the Bockstein
differentials: Our assumptions on A and R guarantee that qm−1 is a nonzerodivisor in RJq−1K,
hence we have a short exact sequence of complexes

0 −! q9Hdg˚
R/A,□/(q

m − 1)
(qm−1)
−−−−! q9Hdg˚

R/A,□/(q
m − 1)2 −! q9Hdg˚

R/A,□/(q
m − 1) −! 0 .

The associated connecting morphisms βm : H˚
R/A,□(m) ! H˚+1

R/A,□(m) are called Bockstein
differentials. As the name suggests, βm turns the graded AJq − 1K-module H˚

R/A,□(m) into a
cochain complex (see rStacks, Tag 0F7Ns for example).

4.17. Lemma. — The graded algebra structure from 4.8 and the Bockstein differentials
constructed in 4.16 make (H˚

R/A,□(m), βm) a commutative differential-graded AJq − 1K-algebra.

Proof. To show commutativity, let ω ∈ q9HdgkR/A,□ be a k-form representing an element in
HkR/A,□(m). It will be enough to show dTi ∧ ω ≡ (−1)kω ∧ dTi mod qm − 1 for all i = 1, . . . , n.
To see this, write

ω =
∑
j∈J

fj dTj1 ∧ · · · ∧ dTjk

for some finite indexing set J . Our assumption on ω reads 0 ≡ (q − 1) q9∇(ω) mod qm − 1. In
particular, it implies that

0 ≡
∑
j∈J

`

γi(fj)− f
˘

dTi ∧ dTj1 ∧ · · · ∧ dTjk mod (qm − 1) .

But dTi ∧ fj dTi ∧ dTj1 ∧ · · · ∧ dTjk = γi(f) dTi ∧ dTj1 ∧ · · · ∧ dTjk holds by definition of the
multiplication on q9Hdg˚

R/A,□. So the congruence above is exactly what we need.
To show the graded Leibniz rule, we’ll only verify that βm : H0

R/A,□(m) ! H1
R/A,□(m) is a

derivation; the arguments in higher degrees are similar. Let f, g ∈ RJq − 1K be elements whose
images modulo (qm − 1) are contained in H0

R/A,□(m). Then (q − 1) q9∇(f) ∈ Ω1
R/AJq − 1K is

divisible by (qm − 1), so that q9∇(f) is divisible by rmsq. A quick unravelling then shows that
βm(f) is the image of

(q − 1) q9∇(f)

(qm − 1)
=
q9∇(f)

rmsq

60

https://stacks.math.columbia.edu/tag/0F7N


§4.3. The q-Hodge complex II: Multiplicative Structure

in H1
R/A,□(m), and likewise for βm(g). Furthermore, if q9∇f is divisible by rmsq, then γi(f)− f

must be divisible by qm − 1 for all i = 1, . . . , n. Thus, by the q-Leibniz rule,

q9∂i(fg)
rmsq

= γi(f)
q9∂ig
rmsq

+ g
q9∂if
rmsq

≡ f
q9∂ig
rmsq

+ g
q9∂if
rmsq

mod (qm − 1) .

This shows βm(fg) = fβm(g)+gβm(f), which means that the Bockstein differential βm satisfies
the Leibniz rule, as desired.

Next, we need to construct Arqs-algebra maps q9Wm(R/A) ! H0
R/A,□(m) for all m. If

R = ArT1, . . . , Tns and □ is just the identity, then these maps are easily defined: We equip R
with the Λ-A-algebra structure in which ψp(Ti) = T pi and consider the composition

q9Wm(R/A)
cm/A
−−−! Rrqs/(qm − 1) −! RJq − 1K/(qm − 1) ,

where cm/A is the comparison map from 2.45. It’s straightforward to see (but we don’t need it
at this point) that this map induces an isomorphism q9Wm(R/A)

^

(q−1) ! H0
R/A,□(m).(4.2) For

general R, however, the Λ-structure on ArT1, . . . , Tns doesn’t extend along the étale morphism
□ : ArT1, . . . , Tns ! R. Instead, we only get δ-structures on the p-completions R̂p for all
primes p. So instead our strategy will be to use an arithmetic fracture pullback square.

4.18. Arithmetic fracture pullback squares. — For any M ∈ D(Z), and any integer
N ̸= 0, the canonical commutative square

M
∏
p|N

M̂p

M
“

1
N

‰

∏
p|N

M̂p

“

1
p

‰

≒

is a pullback square in the derived ∞-category D(Z). Indeed, this is obvious after applying any
of the functors (−)r1/N s or (−)^p for p | N , and these are jointly conservative by Lemma 2.4.

We’ll now study how these squares appear in the situation at hand.

4.19. Lemma. — Let N ̸= 0 be divisible by m. For all primes p let αp := vp(m) denote
the exponent of p in the prime factorisation of m. Then the derived (q − 1)-completion of the
arithmetic fracture pullback square from 4.18 for q9Wm(R/A) takes the form

q9Wm(R/A)
^

(q−1)

∏
p|N

q9Wpvp(m)(R̂p/A)
^

(p,q−1)

R
“

1
N

‰

∏
p|N

R̂p
“

1
p

‰

pFm/pαp q
p

ghm ≒
pghpαp q

p

(4.2)One can use the Λ-structure on R to decompose q9Hdg˚
R/A,□/(q

m − 1) as in 4.10. Then H0
R/A,□(m) can

be read off and it matches up with the (q − 1)-completion of the description of q9Wm(R/A) from the proof of
Lemma 2.46.
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Proof. We start with the top right corner. The Frobenius and Verschiebung

Fm/pαp : q9Wm(R/A) −! q9Wpαp (R/A) and Vm/pαp : q9Wpαp (R/A) −! q9Wm(R/A)

become isomorphisms after derived (p, q− 1)-completion because Fm/pαp ◦Vm/pαp = m/pαp and
Vm/pαp ◦ Fm/pαp = rm/pαpsqp

αp are invertible in Zrqs
^

(p,q−1). This explains why q9Wpαp (−/A)
shows up in the diagram instead of q9Wm(−/A). Furthermore, the canonical morphism
q9Wpαp (R/A) ! q9Wpαp (R̂p/A) becomes an isomorphism after p-completion. Indeed, this
can be checked after p-completed base change along the faithfully flat map A ! A∞. Via
Lemma 2.46, we’re then reduced to a question about absolute q-Witt vectors, which was
addressed in Corollary 2.24.

The bottom corners are similar. Since m and rmsq are invertible in Zr1/N, qs
^

(q−1), the same
argument as above shows that the ghost map ghm : q9Wm(R/A) ! R, or equivalently, the
Frobenius Fm, becomes an isomorphism after (−)r1/N s

^

(q−1). Also note that Rr1/N s doesn’t
need to be (q− 1)-completed because it’s already (q− 1)-torsion. This takes care of the bottom
left corner; the argument for the bottom right corner is analogous.

4.20. Remark. — Observe that all factors of the pullback from Lemma 4.19 are static
(in the sense of 1.10), so we don’t just get a pullback in the derived ∞-category, but also
an honest pullback of Arqs-modules. To see this, it’s enough to check that q9Wm(R/A) and
q9Wpαp (R̂p/A) have bounded (q − 1)∞ and p∞-torsion. This can be done after base change
along A! A∞, where it reduces via Lemma 2.46 to questions about absolute q-Witt vectors
that were addressed in Corollaries 2.22 and 2.26. The same conclusion is true (but for easier
reasons) for the pullback square in Lemma 4.21 below.

4.21. Lemma. — With notation as in Lemma 4.19, the derived (q − 1)-completion of the
arithmetic fracture pullback square from 4.18 for RJq − 1K/(qm − 1) takes the form

RJq − 1K/(qm − 1)
∏
p|N

R̂pJq − 1K/(qp
αp − 1)

Rr1/N s
∏
p|N

R̂p
“

1
p

‰

≒

Proof. One can argue as in Lemma 4.19, but with the Frobenius and Verschiebung replaced
by the canonical projections RJq − 1K/(qm − 1) ! RJq − 1K/(qp

αp − 1) and the multiplication
maps rm/pαpsqp

αp : RJq − 1K/(qp
αp − 1) ! RJq − 1K/(qm − 1).

4.22. Construction. — Fix a prime p. We’ve already seen in 4.9 that the étale framing
□ : ArT1, . . . , Tns ! R determines a Frobenius lift on the p-completion R̂p, which turns R̂p
into a δ-A-algebra by p-torsion freeness. By Remark 2.32, q9Wpαp (R̂p/A) only depends on the
Λp-structure on A, that is, on the δ-structure, and the relative comparison map

cpαp/A : q9Wpαp (R̂p/A) −! R̂prqs/(qp
αp − 1)

from 2.45 can be defined using only a δ-A-algebra structure on R̂p. These comparison maps for
all p | N induce a morphism between the pullback squares from Lemmas 4.19 and 4.21 and
hence a morphism

cm,□ : q9Wm(R/A)
^

(q−1) −! RJq − 1K/(qm − 1) ,
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even though there’s usually no Λ-A-algebra structure on R. Furthermore, it’s easy to see that
cm,□ lands in H0

R/A,□(m). Indeed, we can write the free RJq− 1K/(qm− 1)-module q9Hdg1R/A,□
as a similar pullback as in Lemma 4.21 and then it suffices to check that we get 0 in each factor.
For the bottom factors this is trivial, since the differentials of q9Hdg˚

R/A,□ vanish modulo q − 1.
So it remains to show that the composition

q9Wpαp (R̂p/A) −! R̂pJq − 1K/(qp
αp − 1)

(q−1) q9∇
−−−−−−! (Ω1

R/A)
^
p Jq − 1K/(qp

αp − 1)

vanishes, or in other words, that map cpαp/A lands in H0((q9Hdg˚
R/A,□)

^
p /(qp

αp −1)) for all p | N .
But thanks to 4.10 and 4.12, we can determine that cohomology group. If v = (v1, . . . , vn) is a
multi-index and e is defined as in Lemma 4.14, then the vth component of our desired H0 is
given by

H0
`

(q9Hdg˚,v
R/A,□)

^
p /(q

pαp − 1)
˘

„= rpαp−esqpeT
v1
1 · · ·T vnn R̂

(αp)
p Jq − 1K/(qp

αp − 1) .

By unravelling the definitions, it’s clear that cpαp/A really lands the direct sum of over all v of
these groups. This finishes the construction of a q9Wm(R/A)-algebra structure on H0

R/A,□(m).

4.23. Frobenius and Verschiebung. — For d | m, we define the Frobenius and the
Verschiebung

Fm/d : H
˚
R/A,□(m) −! H˚

R/A,□(d) and Vm/d : H
˚
R/A,□(d) −! H˚

R/A,□(m)

to be the maps induced by the canonical projection q9Hdg˚
R/A,□/(q

m−1) ! q9Hdg˚
R/A,□/(q

d−1)

and the multiplication map rm/dsqd : q9Hdg
˚
R/A,□/(q

d−1) ! q9Hdg˚
R/A,□/(q

m−1), respectively.
It’s clear that Fm/d is a map of graded Arqs-algebras and Vm/d is a map of graded Arqs-modules.
In fact, Vm/d is a map of graded H˚

R/A,□(m)-modules if we equip H˚
R/A,□(d) with the module

structure induced from Fm/d.
These maps are compatible with the Frobenii and Verschiebungen on relative q-Witt

vectors under the maps constructed in Construction 4.22, which is straightforward to check
from the definition and Corollary 2.35. Furthermore, we clearly have Fm/e = Fd/e ◦ Fm/d and
Vm/e = Vm/d◦Vd/e for all chains of divisors e | d | m. The condition Vm/d(ωFm/d(η)) = Vm/d(ω)η
follows from our observation that Vm/d is a map of graded H˚

R/A,□(m)-modules.

According to Remark 3.8, we’ve thus equipped (H˚
R/A,□(m))m∈N with all the structure

from Definition 3.1(a) and (b) as well as Definition 3.6(c), and it only remains to check the
F -Teichmüller condition (τF ). It’s easy to see that the F -Teichmüller condition always holds
up to (m/d)m/d−1-torsion, so it will be enough to show the following lemma.

4.24. Lemma. — For all m ∈ N and all primes p, the cohomology H˚
R/A,□(m) is p-torsion

free in every degree.

For the proof, we need a technical lemma.

4.25. Lemma. — Fix a prime p and consider the following three conditions on a cochain
complex M˚ of Zrqs-modules:
(a) In every degree, M˚ and H˚(M˚) have bounded (q − 1)∞-torsion.
(b) In every degree, M˚ and H˚(M˚) are p-torsion free.
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(c) In every degree, M˚/p and H˚(M˚)/p have bounded (q − 1)∞-torsion.
If M satisfies these conditions, then the derived (q − 1)-completion of M can be computed as
the degree-wise underived (q − 1)-completion, and it also satisfies conditions (a), (b), and (c).
Moreover, taking cohomology of M˚ commutes with derived (q− 1)-completion and with derived
(p, q − 1)-completion.

Proof. Condition (a) implies that the derived (q − 1)-completion of M˚ can be computed as
the degree-wise underived (q − 1)-completion. Furthermore, via the spectral sequence from
rStacks, Tag 0BKEs, it implies that (q − 1)-completion (derived or underived doesn’t matter)
commutes with taking cohomology. In formulas,

H˚
`

M̂˚
(q−1)

˘

„= H˚(M)^(q−1) .

It is now clear that (a) is still satisfied for M̂˚
(q−1). For conditions (b) and (c), let N be any

p-torsion free Zrqs-module. Then
N

p
−! N −! N/p

is a cofibre sequence of static objects in D(Zrqs). If both N and N/p have bounded (q − 1)∞-
torsion, then applying (−)^(q−1) to this cofibre sequence still yields a cofibre sequence of static
objects. This shows that N^

(q−1) is still p-torsion free and that N^

(q−1)/p is the derived or
underived (q− 1)-completion of N/p. Applied to M˚, we conclude that the degree-wise (q− 1)-
completion M̂˚

(q−1) still satisfies all three conditions. In particular, its cohomology is p-torsion
free and so taking cohomology commutes with derived p-completion. In formulas,

H˚
`

M̂˚
(p,q−1)

˘

„= H˚
`

M̂˚
(q−1)

˘^

p
„= H˚(M)^(p,q−1) ,

which is the last assertion we had to show.

Proof of Lemma 4.24. We’ll show that the conditions of Lemma 4.25 are satisfied for the complex
M˚ = q9Hdg˚

R/A,□/(q
m − 1). Let’s first consider the case A = Z. Thanks to Construction 4.22,

we know that q9Hdg˚
R/Z,□/(q

m− 1) is a complex of q9Wm(R)
^

(q−1)-modules. We also know that
q9Wm(R)

^

(q−1) is noetherian using Corollary 2.39. Furthermore, the proof of said corollary shows
that RJq − 1K/(qm − 1) is finite over q9Wm(R)

^

(q−1). So q9Hdg˚
R/Z,□/(q

m − 1) is a complex of
finitely generated modules over a noetherian ring. Hence conditions (a) and (c) from Lemma 4.25
become obvious. It remains to check condition (b). It’s clear that q9Hdg˚

R/Z,□/(q
m − 1) is

degree-wise p-torsion free. For complexes of finitely generated modules over a noetherian ring, p-
completion (derived or underived doesn’t matter) commutes with cohomology. Furthermore, an
abelian group is p-torsion free if and only if its derived p-completion is static and p-torsion free.
Now the derived p-completion of q9Hdg˚

R/Z,□/(q
m−1) is computed by (q9Hdg˚

R/Z,□)
^
p /(qp

α−1),
where α is the exponent of p in the prime factorisation of m. Since we know this complex has
p-torsion free cohomology by Corollary 4.15, it follows that H˚

R/Z,□(m) must be p-torsion free
as well, as desired.

Now let A be an arbitrary Λ-ring (except that we still impose the condition that a faithfully
flat morphism of Λ-rings A! A∞ into a perfect Λ-ring exists). Let R0 := ZrT1, . . . , Tns. We
claim that

q9Hdg˚
R/A,□/(q

m − 1) „=
´

q9Hdg˚
R0/Z,□/(q

m − 1) bq9Wm(R0) q9Wm(R/A)
¯^

(q−1)
,
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where the completion is the degree-wise underived (q − 1)-completion, but it computes the
derived (q − 1)-completion (as we’ll see in a moment). To see this, first observe that the
base change along q9Wm(R0) ! q9Wm(R/A) is flat. Indeed, our assumptions imply that A
is flat over Z, hence q9Wm(R0) ! q9Wm(R0 bZ A/A) is flat by Lemma 2.46. Furthermore,
□ : ArT1, . . . , Tns „= R0 bZ A ! R is étale, hence so is q9Wm(R0 bZ A/A) ! q9Wm(R/A) by
Proposition 2.48. The fact that q9Hdg˚

R0/Z,□/(q
m − 1) bq9Wm(R0) q9Wm(R/A) is a flat base

change of q9Hdg˚
R0/Z,□/(q

m − 1) immediately implies that it satisfies the conditions (a), (b),
and (c) from Lemma 4.25, and so the degree-wise underived (q − 1)-completion indeed agrees
with the derived (q − 1)-completion. This also shows that once we’ve proved the isomorphism
above, we’ll be immediately done by Lemma 4.25.

To prove the claimed isomorphism, it’s enough to show that that the natural map
´

R0Jq − 1K/(qm − 1) bL
q9Wm(R0)

q9Wm(R/A)
¯^

(q−1)

»
−! RJq − 1K/(qm − 1)

is an equivalence, as q9Hdg˚
R0/Z,□/(q

m − 1) and q9Hdg˚
R/A,□/(q

m − 1) are degree-wise free
modules over R0Jq − 1K/(qm − 1) and RJq − 1K/(qm − 1), respectively, with compatible bases.
By the derived Nakayama lemma rStacks, Tag 0G1Us such an equivalence can be checked
after applying R bL

R0Jq−1K/(qm−1) −. The right-hand side then becomes R. The left-hand side
becomes

R0 bL
ghm, q9Wm(R0)

q9Wm(R/A) » (R0 bZ A) bL
ghm, q9Wm(R0bZA/A)

q9Wm(R/A) ,

where we’ve used that cm : q9Wm(R0) ! RJq−1K/(qm−1) intertwines the canonical projection
to R0 with the mth ghost map. The claim now follows from Corollary 2.51.

4.26. Construction. — This finishes the construction of a q-FV -system of differential-
graded A-algebras over A on (H˚

R/A,□(m))m∈N. By Proposition 3.17, this induces a unique
morphism of q-FV -systems (q9WmΩ

˚
R/A)m∈N ! (H˚

R/A,□(m))m∈N. Since H˚
R/A,□(m) is derived

(q−1)-complete in every degree, this morphism of q-FV systems factors through the degree-wise
derived (q− 1)-completions. By Lemma 4.6, we can equally well take the degree-wise underived
(q − 1)-completions, and so we obtain morphisms

`

q9WmΩ
˚
R/A

˘^

(q−1)
−! H˚

R/A,□(m)

which finally allow us to state the relative version of Theorem 1.7.

4.27. Theorem. — Let R be a smooth algebra over the perfectly covered Λ-ring A. Then the
canonical morphism from Construction 4.26 is an isomorphism

`

q9WmΩ
˚
R/A

˘^

(q−1)

„=−! H˚
`

q9Hdg˚
R/A,□/(q

m − 1)
˘

for all positive integers m ∈ N.

§4.4. Proof of the main results I: The p-typical case
After our lengthy digression, we return to the induction outlined in our battle plan 4.3. The
goal of this subsection is to prove the remaining three implications, starting with (aα) ⇒ (bα).
We keep the shorthand H˚

R/A,□(p
α) := H˚(q9Hdg˚

R/A,□/(q
pα − 1)) as in §4.3 and note that the

degree-wise p-completion H˚
R/A,□(p

α)^p computes the cohomology of (q9Hdg˚
R/A,□)

^
p /(qp

α − 1)
by Lemma 4.24.
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4.28. The Frobenius on the q-Hodge complex. — As in the proof of Lemma 4.11 we
extend ϕ□ to a Frobenius lift ϕ□ : R̂pJq − 1K ! R̂pJq − 1K by putting ϕ□(q) := qp. We can
further extend this to an endomorphism of complexes

ϕ□ :
`

q9Hdg˚
R/A,□

˘^

p
−!

`

q9Hdg˚
R/A,□

˘^

p

by putting ϕ□(dTi) := T p−1
i dTi. Indeed, we’ve checked in the proof of Lemma 4.11 that ϕ□

and γi commute and so to check that ϕ□ respects the differential, it’s enough to compute

ϕ□
`

(q − 1) q9∂if
˘

= ϕ□

ˆ

γi(f)− f

Ti
dTi

˙

=
ϕ□

`

γi(f)
˘

− ϕ□(f)

T pi
T p−1
i dTi

=
γi
`

ϕ□(f)
˘

− ϕ□(f)

Ti
dTi

= (q − 1) q9∂i
`

ϕ□(f)
˘

.

The Frobenius lift on A can be extended to a Frobenius lift ϕ : Arqs ! Arqs by putting ϕ(q) := qp.
Then the endomorphism ϕ□ induces a relative Frobenius

ϕα□/A :
´

q9Hdg˚
R/A,□ bArqs,ϕα Arqs

¯^

(p,q−1)
−!

`

q9Hdg˚
R/A,□

˘^

p
.

Following our conventions from 1.10, here we take the degree-wise underived completions,
but they coincide with the derived completion, because q9Hdg˚

R/A,□ is degree-wise p- and
(q− 1)-torsion free and ϕ : Arqs ! Arqs is flat (using footnote (2.3) in Remark 2.47). Also recall
from 4.10 that we have a decomposition

`

q9Hdg˚
R/A,□

˘^

p
„=
à

v

`

q9Hdg˚,v
R/A,□

˘^

p
.

Let us denote by (q9Hdg˚,0
R/A,□)

^
p the direct summand for v = (0, . . . , 0) and by H˚,0

R/A,□(p
α)^p

the corresponding direct summand of H˚
R/A,□(p

α)^p .

4.29. Lemma. — The relative Frobenius ϕα□/A is an isomorphism onto (q9Hdg˚,0
R/A,□)

^
p . In

particular, we obtain an isomorphism of differential-graded Arqs-algebras

H˚,0
R/A,□(p

α)^p
„=
`

Ω˚
R/A bA,ϕα Arqs/(qp

α − 1)
˘^

p

Proof. To see that we get an isomorphism onto (q9Hdg˚,0
R/A,□)

^
p , just observe that

ϕα□/A :
`

RJq − 1K bArqs,ϕα Arqs
˘

(p,q−1)

»
−! R̂(α)

p Jq − 1K

is an equivalence essentially by definition of R̂(α)
p and then check that ϕα□/A sends the bases

from 4.10 onto each other.
To show the second assertion, we deduce from the first one that (q9Hdg˚,0

R/A,□)
^
p /(qp

α − 1)

is a flat base change of q9Hdg˚
R/A,□/(q − 1) up to (p, q − 1)-completion (or just p-completion

because we’re already in a (qp
α − 1)-torsion situation). It straightforward to check that the

cohomology H˚(q9Hdg˚
R/A,□/(q − 1)), equipped with the Bockstein differential, is the de Rham

complex Ω˚
R/A. It remains to check that p-completion commutes with taking cohomology, but

this is clear since we’ve just checked that

H˚
´

q9HdgR/A,□/(q − 1) bArqs,ϕα Arqs

¯

„= Ω˚
R/A bA,ϕα Arqs/(qp

α − 1)

is degree-wise p-torsion free.
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4.30. Lemma. — Let V˚
pα ⊆ H˚

R/A,□(p
α)^p be the p-complete graded sub-Arqs-module generated

by the images of Vp and dVp. Then there’s a short exact sequence

0 −! V˚
pα −! H˚

R/A,□(p
α)^p −! H˚,0

R/A,□(p
α)^p /Φpα(q) −! 0 ,

in which the second arrow is the canonical inclusion and the third arrow is the projection to the
direct summand H˚,0

R/A,□(p
α)^p .

Proof. It’s clear from the construction in 4.23 that the kernel K˚ of the canonical projection
H˚
R/A,□(p

α)^p ! H˚,0
R/A,□(p

α)^p /Φpα(q) contains the image of Vp, hence K˚ also contains the
p-complete differential-graded ideal generated by the image of Vp. This shows V˚

pα ⊆ K˚.
It remains to show that V˚

pα ! K˚ is surjective. We would like to use the decomposition
from Lemma 4.14 to show this. Alas, this decomposition is not compatible with the Bockstein
differential. But we can use a trick: It’s enough to show that V˚

pα ! K˚ is surjective modulo p,
as both sides are p-complete. But modulo p, we have a surjection

q9Hdg˚
R/A,□/

`

p, qp
α+1 − 1

˘

−↠ q9Hdg˚
R/A,□/

`

p, (qp
α − 1)2

˘

,

hence the decomposition of q9Hdg˚
R/A,□/(p, q

pα+1 − 1) is, in fact, compatible with the Bockstein
differential modulo (p, qp

α − 1). So we’ll use this decomposition instead. We’ll also use that
modding out p commutes with taking cohomology for the complex q9Hdg˚

R/A,□/(q
pα−1) thanks

to Lemma 4.24.
Consider a two-term complex K˚

α+1,e as in 4.12, where 0 ⩽ e ⩽ α+ 1. Put e := mintα, eu

and K˚
α+1,e := K˚

α+1,e/(p, q
pα − 1). Then K˚

α+1,e is the two-term complex

K˚
α+1,e

„=

ˆ

Fprqs/(q − 1)p
α (q−1)p

e

−−−−−! Fprqs/(q − 1)p
α

˙

with cohomology H0(K˚
α+1,e)

„= (q− 1)p
α−peFprqs/(q− 1)p

α , H1(K˚
α+1,e)

„= Fprqs/(q− 1)p
e . By

a simple unravelling, the Bockstein differential βpα : H0(K˚
α+1,e) ! H1(K˚

α+1,e) coming from
the surjection K˚

α+1,e/(p, (q − 1)2p
α
) ↠ K˚

α+1,e is given by

βpα
`

(q − 1)p
α−peω

˘

= (q − 1)p
e−peω

for all ω ∈ Fprqs/(qp
α − 1). For e ⩽ α − 1, we conclude that every class in H0(K˚

α+1,e) is
contained in the image of Vp, since they’re all divisible by (q − 1)p

α−pα−1 ≡ Φpα(q) mod p,
and similarly that every class in H1(K˚

α+1,e) is contained in the image of dVp. This shows that
Vpα ! H˚

R/A,□(p
α)^p is a surjection in every direct summands except possibly H˚,0

R/A,□(p
α)^p . To

analyse the situation for the latter, just observe that the kernel of

H˚,0
R/A,□(p

α)^p −! H˚,0
R/A,□(p

α)^p /Φpα(q)

is given by the classes divisible by Φpα(q). But every such class is in the image of Vp due to the
relation Vp ◦ Fp = Φpα(q).

Proof of (aα) ⇒ (bα). We wish to show that after p-completion, the canonical map from
Theorem 4.27 for m = pα becomes an isomorphism

`

q9WpαΩ
˚
R/A

˘^

p

„=−! H˚
R/A,□(p

α)^p
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(the left-hand side doesn’t need to be (q − 1)-completed since it is already p-complete and
(qp

α−1)-torsion). To do so, let V˚
pα ⊆ (q9WpαΩ

˚
R/A)

^
p be the p-complete graded sub-Arqs-module

generated by the image of Vp and dVp. Now consider the diagram

0 V˚
pα

`

q9WpαΩ
˚
R/A

˘^

p

`

Ω˚
R/A bA,ϕα Arζpαs

˘^

p
0

0 V˚
pα H˚

R/A,□(p
α)^p

`

Ω˚
R/A bA,ϕα Arζpαs

˘^

p
0

The bottom row is exact by Lemmas 4.29 and 4.30. The top row is exact by passing to
degree-wise p-completions in Lemma 4.5; this preserves exactness since (aα) implies that all
p-completions agree with the corresponding derived p-completions. By the five lemma, it will
be enough to show that the left and the right vertical maps are isomorphisms.

Let’s begin with the right one and verify that it really is the identity, as indicated. By
the universal property of de Rham complexes it’s enough to check this in degree 0. Now the
diagram

q9Wpα(R̂p/A) R̂prqs/(qp
α − 1)

pR bA,ϕα Aq
^

p rζpαs R̂prζpαs

cpα/A

gh1
ϕα□/A

commutes and the bottom row is injective, as we’ve checked in 4.9 and 4.10. This shows that
we really get the identity in degree 0.

To complete the proof, let’s shows that the left vertical arrow is an isomorphism. Using the
inductive hypothesis (bα−1) as well as injectivity of the Verschiebungen Vp (which follows from
Fp ◦ Vp = p combined with our p-torsion freeness results (aα) and Lemma 4.24), we see that we
get an isomorphism when restricted to the respective images of Vp. This immediately implies
that V˚

pα ! V˚
pα must be surjective. For injectivity, observe that pV˚

pα and pV˚
pα are contained

in the respective images of Vp since pdVp = Vp ◦ d by Lemma 3.2. So pV˚
pα ! pV˚

pα must be
injective. By p-torsion freeness we conclude that V˚

pα ! V˚
pα must be injective as well.

Next we set out to prove the implication (bα) ⇒ (cα). From now on, R is an arbitrary
smooth A-algebra; the existence of an étale framing □ : ArT1, . . . , Tns ! R is no longer assumed.

4.31. A non-canonical quasi-isomorphism I. — Contrary to what we just said, assume
that R admits an étale framing □ : ArT1, . . . , Tns ! R and fix one such choice. We’ll use it to
construct a quasi-isomorphism as in Proposition 4.2, albeit a priori a non-canonical one (and
compatibility with the E∞-Arqs-algebra structures is also not a priori clear). To do that, we
consider the following diagram:

´

q9Ω˚
R/A,□ bArqs,ϕα Arqs/(qp

α − 1)
¯^

p
η(Φp(q)Φp2 (q)···Φpα (q))

´

`

q9Ω˚
R/A,□

˘^

p

¯

/(qp
α − 1)

H˚
´

`

q9Hdg˚
R/A,□

˘^

p
/(qp

α − 1)
¯

η(qpα−1)

´

`

q9Hdg˚
R/A,□

˘^

p

¯

/(qp
α − 1)

ϕα□/A

„=

»
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Let us explain what happens here: The right vertical arrow is an isomorphism for obvious
reasons, and the bottom arrow is the quasi-isomorphism from rStacks, Tag 0F7Ts. The top row
comes from the map of complexes

ϕ□ :
`

q9Ω˚
R/A,□

˘^

p
−!

`

q9Ω˚
R/A,□

˘^

p

which is constructed as in 4.28 except that we put ϕ□(dTi) := Φp(q)T
p−1
i dTi.(4.3) By construc-

tion, the image of ϕ□ is contained in the subcomplex ηΦp(q)((q9Ω˚
R/A,□)

^
p ), hence the top row

ϕα□/A of the diagram has the indicated form.

4.32. Lemma. — The morphism ϕα□/A from the diagram from 4.31 is a quasi-isomorphism.

Proof. This is a general feature of prismatic cohomology. If we consider S := R̂prζps and the q-de
Rham prism (ÂpJq − 1K, (Φp(q))), then (q9Ω˚

R/A,□)
^
p » ∆

S/ÂpJq−1K by rBS19, Theorem 16.22s.
As we’ll check below, this identifies ϕ□ with the primsatic Frobenius. Now for any prism (B, J),
rBS19, Theorem 15.3s shows that the relative Frobenius

`

∆S/B bL
B,ϕαB

B
˘^

(p,J)

»
−! Lη(JϕB(J)···ϕα−1

B (J))∆S/B .

is a quasi-isomorphism, which is what we want.
To check that ϕ□ agrees with the prismatic Frobenius, first observe that with the same

definition, one can define an endomorphism ϕ□ for any q-PD de Rham complex as in rBS19,
Construction 16.20s. We claim that each of them computes the prismatic Frobenius. To show
this, consider the cosimplicial complex M•,˚ from the proof of rBS19, Theorem 16.22s. Applying
our construction of ϕ□ for q-PD de Rham complexes yields an endomorphism ϕ□ : M•,˚ !M•,˚.
Restricted to M0,˚, this is the endomorphism we started with. Restricted to the cosimplicial
ÂpJq − 1K-module M•,0, we get the prismatic Frobenius, since in degree 0 the endomorphism
ϕ□ is induced by the Frobenii of the q-PD envelopes involved (which are δ-rings).

4.33. A non-canonical isomorphism II. — Since ϕα : Arqs ! Arqs/(qp
α − 1) factors

through the projection Arqs ! A, the top left corner in the diagram from 4.31 is isomorphic to
(Ω˚

R/A bA,ϕα Arqs/(qp
α − 1))^p . By (bα), the bottom left corner is isomorphic to (q9WpαΩ

˚
R/A)

^
p .

This yields a quasi-isomorphism

s□/A :
`

ΩR/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p

»
−!

`

q9WpαΩR/A
˘^

p
,

which has the desired form from Proposition 4.2. As we’ve already mentioned above, this quasi-
isomorphism is a priori non-canonical and compatibility with the E∞-Arqs-algebra structures is
far from clear.

As we’ll see now, the map s□/A from 4.33 is, in fact, canonical.

4.34. A functorial comparison map. — Let π : P ↠ R̂p be any surjection from a p-
completely ind-smooth δ-Âp-algebra (see 1.10 for the terminology). Let D(π) denote the divided
power envelope of kerπ. Then D(π) has a canonical δ-structure by rBS19, Corollary 2.39s. We
let Ω˚

D(π)/A and Ω̆˚
D(π)/A

„= Ω˚
P/A bP D(π) denote the ordinary and the PD-de Rham complex

(4.3)Under the identification ηΦp(q)(q9Ω
˚
R/A,□)

„= η(qp−1)(q9Hdg˚
R/A,□), this agrees with applying η(q−1) to the

Frobenius morphism from 4.28 (which sends q 7! qp, so η(q−1) on the left-hand side corresponds to η(qp−1) on
the right-hand side).
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of D(π), respectively. Note that the crystalline Poincaré lemma rStacks, Tag 07LGs shows that
the canonical map (Ω̆˚

D(π)/A)
^
p ! (Ω˚

R/A)
^
p is an equivalence on underlying E∞-algebras.

Using 2.45 (for which we only need a Λp-A-algebra structure on D(π), so the given δ-structure
does it) we get a comparison map spα/A : D(π) bA,ϕα Arqs/(qp

α − 1) ! q9Wpα(D(π)/A) which
induces a morphism of differential-graded Arqs-algebras

Ω˚
D(π)/A bA,ϕα Arqs/(qp

α − 1) −! q9WpαΩ
˚
D(π)/A .

Now let q9WpαΩ
˚
D(π)/A

:= q9WpαΩ
˚
D(π)/A/(p

∞-torsion). Since q9WpαΩ
˚

D(π)/A is p-local (because
D(π) is, see Corollary 2.20(a)) and p-torsion-free, its differentials must be PD-derivations.
Therefore, we get an induced map Ω̆˚

D(π)/A ! q9WpαΩ
˚
D(π)/A and hence also a map

`

Ω̆˚
D(π)/A bA,ϕα Arqs/(qp

α − 1)
˘^

p
−!

`

q9WpαΩ
˚
D(π)/A

˘^

p
,

where the completion is the degree-wise underived p-completion (following our convention
from 1.10). Finally, since q9WpαΩ

˚
R/A is degree-wise p-torsion-free by (aα), the natural map

q9WpαΩ
˚
D(π)/A ! q9WpαΩ

˚
R/A induces a morphism (q9WpαΩ

˚
D(π)/A)

^
p ! (q9WpαΩ

˚
R/A)

^
p of

differential-graded Arqs-algebras. Summarising, we obtain the following diagram of E∞-Arqs-
algebras

`

Ω̆D(π)/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p

`

q9WpαΩD(π)/A

˘^

p

`

ΩR/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p

`

q9WpαΩR/A
˘^

p

»

sπ

Since the left vertical arrow is an equivalence, the bottom dashed arrow sπ exists uniquely up
to contractible choice.

We claim that sπ doesn’t depend on the choice of π : P ↠ R̂p (up to equivalence in the ∞-
category CAlg(D̂p(Arqs)) of p-complete E∞-Arqs-algebras). Indeed, let π′ : P ′ ↠ R̂p be another
surjection from a p-completely ind-smooth δ-Âp-algebra. If there exists a δ-Âp-algebra map
f : P ! P ′ such that π = π′ ◦ f , then it’s clear that sπ » sπ′ since the the whole construction is
functorial with respect to δ-Âp-algebra maps. In general, let CR denote the category of surjections
(π : P ↠ R̂p) as above, with morphisms π ! π′ given by δ-Âp-algebra morphisms f : P ! P ′

such that π = π′ ◦ f . Then CR has coproducts given by π ⊔ π′ = (π b π′ : (P bA P
′)^p ↠ R̂p),

hence it is weakly contractible.(4.4) Therefore, for arbitrary elements in CR, there’s an essentially
unique way to compare them, proving that they all give rise to the same map sπ up to
equivalence.

Furthermore, this map can be made functorial in R. The easiest way to do so is to simply
choose a functorial surjection πR : PR ↠ R̂p from a p-completely ind-smooth δ-ring; for example,
one can take PR := ÂptW (R̂p)u

^
p to be the p-complete free δ-Âp-algebra on the set W (R̂p) of

p-typical Witt vectors, together with its canonical surjection

πR : PR −↠W (R̂p) −↠ R̂p

Here W (R̂p) is equipped with its Âp-algebra structure induced via Âp ! W (Âp) ! W (R̂p),
using the δ-structure on Âp. This yields the desired functoriality.

(4.4)If C is any ∞-category with coproducts, the diagonal ∆: C ! C × C has a left adjoint, which forces
|∆| : |C| ! |C| × |C| to be an equivalence. Then all π˚|C| must be singletons.
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4.35. Remark. — A conceptually nicer way would be to consider the category C of all pairs
(R, π : P ↠ R̂p) together with its forgetful functor U : C ! SmA into the category of smooth
A-algebras. In 4.34 we’ve constructed a natural transformation

s(−) :
`

Ω̆D(−)/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p
=⇒

`

q9WpαΩ−/A
˘^

p
◦ U .

One can show that (Ω−/A bL
A,ϕα Arqs/(qp

α − 1))^p is the left Kan extension of the functor on
the left-hand side along U .(4.5) Then the universal property of left Kan extension provides the
desired natural transformation.

Armed with a functorial comparison map, we’ll now prove the remaining two implications,
thus finishing the induction outlined in 4.3.

Proof of (bα) ⇒ (cα). We need to prove that the natural transformation
`

Ω−/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p
=⇒

`

q9WpαΩ−/A
˘^

p

constructed in 4.34 and Remark 4.35 is an equivalence. As both sides are étale sheaves by Corol-
lary 3.33, it’s enough to do this in the case where there exists an étale map □ : ArT1, . . . , Tns ! R.
As in 4.9, we get a δ-Âp-algebra structure on R̂p, thus making (id : R̂p ! R̂p) into an object of
CR. The corresponding divided power envelope is just R̂p itself and so, with notation as in 4.34,
sid is a morphism of differential-graded Arqs-algebras

`

Ω˚
R/A bA,ϕα Arqs/(qp

α − 1)
˘^

p
−!

`

q9WpαΩ
˚
R/A

˘^

p
.

We claim that this map coincides with the quasi-isomorphism s□/A from 4.31, which would
finish the proof.

Both sid and s□/A are given as explicit maps of differential-graded Arqs-algebras. By the
universal property of de Rham complexes, it is thus enough to check that sid and s□/A agree in
degree 0. In fact, it’s enough to check this after postcomposition with the comparison map
cpα/A : q9Wpα(R̂p/A) ! R̂prqs/(qp

α − 1), which we know to be injective as a consequence of
(bα). By construction, sid is given by the comparison map

spα/A : R̂p bA,ϕα Arqs/(qp
α − 1) −! q9Wpα(R̂p/A)

from 2.45 in degree 0, using the δ-A-algebra structure on R̂p. We’ve noted in 2.45 that
cpα/A ◦ spα/A is given by the linearised (pα)th Adams operation of R̂p. But that’s just ϕα□/A! By
unravelling 4.31, we see that s□/A in degree 0, postcomposed with cpα/A, is also given by ϕα□/A.
This finishes the proof.

(4.5)For any R ∈ SmA, the value of the left Kan extension at R is given by colim(C/R ! C ! CAlg(D̂p(Arqs))).
Using that CR is weakly contractible, it will thus be enough to check that CR ! C/R is coinitial. The same
argument as in 4.34 shows that C/R has coproducts. Thus, if we choose any π0 ∈ CR, then the slice category
projection (C/R)π0/ ! C/R will be a right adjoint, with left adjoint given by −⊔π0. In particular, (C/R)π0/ ! C/R
is coinitial. Now let (C/R)surj ⊆ C/R be the full subcategory spanned by those ((R′, π′) ∈ C, (R′ ! R) ∈ (SmA)/R)
for which R′ ! R is surjective. By inspection, the image of (C/R)π0/ ! C/R lands in (C/R)surj. The same
adjointness argument then shows that (C/R)π0/ ! (C/R)surj is coinitial too, hence (C/R)surj ! C/R must also be
coinitial. Finally, CR ! (C/R)surj is a right adjoint, hence coinitial: The left adjoint simply sends a surjection
π′ : P ↠ R̂′

p to its composition with R̂′
p ↠ R̂p.
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Proof of (cα) ⇒ (dα). The idea is to combine the equivalence from Proposition 4.2 with the
Cartier isomorphism. Let R „= ArT1, . . . , Tns be a polynomial ring; we equip R̂p with the
identity p-completely étale framing □ : Âp⟨T1, . . . , Tn⟩ ! R̂p and the corresponding δ-Âp-algebra
structure given by δ(Ti) = 0. Furthermore, let

s□/A :
`

Ω˚
R/A bA,ϕα Arqs/(qp

α − 1)
˘^

p

»
−!

`

q9WpαΩ
˚
R/A

˘^

p

be the explicit quasi-isomorphism from 4.31. We note that the left-hand side can be rewritten
as (ΩR0/Z bZ Arqs/(qp

α − 1))^p , where R0 := ZrT1, . . . , Tns.
Now assume ξ ∈ q9WpαΩ

i
R/A satisfies dξ ≡ 0 mod p. Letting ξ denote the image of ξ in

q9WpαΩ
˚
R/A/p; we see that ξ is a cycle. Since both source and target of s□/A are p-torsion-free

(using (aα), which we already know), it induces a quasi-isomorphism

s□/A : Ω
˚
(R0/p)/Fp bFp (A/p)rqs/

`

qp
α − 1

˘ »
−! q9WpαΩ

˚
R/A/p .

Consequently, we can write ξ = s□/A(ϑ) + dξ0, where ϑ is a cycle in the base changed de
Rham complex Ωi(R0/p)/Fp bFp (A/p)rqs/(qp

α − 1). But cycles in the de Rham complex of a
polynomial ring over Fp can be very explicitly described using the Cartier isomorphism, or
rather the ideas that lead to it. Namely, we can write ϑ = ϑ0 + dϑ1, where ϑ0 is an Arqs-linear
combination of terms of the form T pv11 · · ·T pvnn (T p−1

n1 dTn1) · · · (T
p−1
ni dTni), where v1, . . . , vd ⩾ 0

and 1 ⩽ n1 < n2 < . . . < ni ⩽ n. Now choose lifts ξ0, ϑ0 and ϑ1 of ξ0, ϑ0, and ϑ1, respectively.
Then ξ ≡ s□/A(ϑ0) + ds□/A(ϑ1) + dξ0 mod p. Both ds□/A(ϑ1) and dξ0 are in the image of
Fp : q9Wpα+1Ω˚

R/A ! q9WpαΩ
˚
R/A since Fp ◦ d ◦ Vp = d. Furthermore, we’ve seen in the proof

of (bα) ⇒ (cα) above that s□/A is induced by the comparison map spα/A from 2.45. This
map sends Ti to its Teichmüller lift τpα(Ti) since δ(Ti) = 0. Hence s□/A(ϑ0) is an Arqs-linear
combination of terms of the form

τpα(T1)
pv1 · · · τpα(Tn)pvn

`

τpα(Tn1)
p−1 dτpα(Tn1)

˘

· · ·
`

τpα(Tni)
p−1 dτpα(Tni)

˘

,

which are also in the image of Fp. This finishes the proof.

§4.5. Proof of the main results II: The global case

In the previous section we’ve carried out the induction outlined in our battle plan 4.3. It remains
to prove the global cases of Propositions 4.1 and 4.2 as wellas Theorem 4.27. Fortunately, these
are all easily reduced to the p-typical cases.

Proof of Proposition 4.1. We show that q9WmΩ
˚
R is degree-wise p-torsion-free using induction

on m. The case m = 1 is covered by (a0). Now let m > 1. Using étale descent as in the proofs
of Lemmas 4.5 and 4.6, we can reduce to the case where R is a polynomial ring, and then by
base change and Lemma 3.16 we can reduce to the case A = Z.

By Corollary 2.39 and Proposition 3.12(a), we see that q9WmΩ
˚
R/Z is degree-wise finitely

generated over the noetherian ring q9Wm(R). By the same argument as in the proof of
Lemma 3.23, it’s therefore enough to show p-torsion freeness after applying each of the functors

(−)
“

1
p

‰

, (−)^
(p,qm/ℓ−1)

, and (−)
”

1
qm/ℓ−1

∣∣∣ ℓ ̸= p
ı

,
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where ℓ ranges over all prime factors ̸= p of m. After localisation at p, the p-torsion freeness is
trivial. After (p, qm/ℓ − 1)-adic completion, both ℓ and rℓsqm/ℓ become units and so

Fℓ :
`

q9WmΩ
˚
R/Z

˘^

(p,qm/ℓ−1)

„=−!
`

q9Wm/ℓΩ
˚
R/Z

˘^

(p,qm/ℓ−1)

is a graded isomorphism with inverse rℓs−1
qm/ℓ

Vℓ. By the inductive hypothesis, the right-hand
side is p-torsion-free, hence so is the left-hand side. Finally, if α is the exponent of p in the
prime factorisation of m, then q9WmΩ

˚
R/Z

“

1/(qm/ℓ − 1)
∣∣ ℓ ̸= p

‰

is isomorphic to a flat base
change of q9WpαΩ

˚
R/Z, as was argued in the proof of Lemma 3.23, so we’re done by (aα).

To prove Proposition 4.2, we first need a q-de Rham–Witt analogue of Lemma 2.30:

4.36. Lemma. — Let R be any A-algebra and let m = pαn be an integer, where α = vp(m) is
the exponent of p in the prime factorisation of m. Then there’s an isomorphism of differential-
graded A(p)rqs-algebras

`

q9WmΩ
˚
R/A

˘

(p)
„=

∏
d|n

´

q9WpαΩ
˚
R/A bArqs,ψd A(p)rqs/Φd(q

pα)
¯

,

where the map ψd : Arqs ! A(p)rqs/Φd(q
pα) is given by the Adams operation on the Λ-ring A

and ψd(q) := qd.

Proof sketch. Let us abbreviate the right-hand side by Π˚
m. We’ll show that (Π˚

m)m∈N exhibits
the same universal property as ((q9WmΩ

˚
R/A)(p))m∈N. To do so, one must first construct the

structure of a q-FV -system of differential-graded A-algebras over R on (Π˚
m)m∈N. Let us first

explain how to equip each Π0
m with a q9Wm(R) bq9Wm(A),cm A(p)rqs/(qm − 1)-algebra structure.

To do so, we use

q9Wm(A)(p)
∏
d|n

q9Wpα(A) bZrqs,ψd Z(p)rqs/Φd(q
pα)

A(p)rqs/(qm − 1)
∏
d|n

A(p)rqs/Φd(q
pα)

„=

(2.30)

cm

„=

The top isomorphism is Lemma 2.30 and the bottom isomorphism is the Chinese remainder
theorem. The arrow on the right to make the diagram commute is given as follows: In the dth

factor, take the composition

q9Wpα(A)
cpα
−! Arqs/(qp

α − 1)
ψd
−! A(p)rqs/Φd(q

pα)

and extend it linearly along the map ψd : Zrqs ! Z(p)rqs/Φd(q
pα). To check that this really makes

the diagram commute can be done on ghost components, where it becomes a straightforward
but tedious unravelling of definitions.

Now to construct the desired q9Wm(R) bq9Wm(A),cm A(p)rqs/(qm − 1)-algebra structure on
Π0
m

„=
∏
d|n q9Wpα(R/A)bArqs,ψdA(p)rqs/Φd(q

pα), we observe that the relative q-Witt vector ring
q9Wpα(R/A) is an algebra over q9Wpα(R)bq9Wpα (A),cpα Arqs/(qp

α−1) and then use Lemma 2.30
together with the diagram above.
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To construct Frobenii and Verschiebungen on (Π˚
m)m∈N, we proceed in the exact same way as

in the proof of Lemma 2.30. It’s straightforward to verify that these satisfy the conditions from
Definition 3.1(b), Definition 3.6(c), and the Teichmüller conditions (τV ) and (τF ). The existence
of Arqs-linear Verschiebungen implies that the q9Wm(R) bq9Wm(A),cm A(p)rqs/(qm − 1)-algebra
structure on Π0

m factors through a q9Wm(R/A)(p)-algebra structure.
This finishes the construction of the desired structure on (Π˚

m)m∈N. To prove universality,
one can use the same argument as in the proof of Lemma 2.30.

Proof of Proposition 4.2. The morphisms ψd : Arqs/(qp
α − 1) ! A(p)rqs/(Φd(q) · · ·Φpαd(q)) are

flat by our assumptions on A. Therefore, the tensor products in Lemma 4.36 can be replaced
by derived tensor products and we can reduce the general case of Proposition 4.2 to the case
m = pα, which we’ve already proved in (cα).

Proof of Theorem 4.27. By Lemma 2.4, to check whether
`

q9WmΩ
˚
R/A

˘^

(q−1)
−! H˚

`

q9Hdg˚
R/A,□/(q

m − 1)
˘

is an isomorphism, it’s enough to do so after degree-wise application of the functors (−)r1/N s

and (−)^p for p | N , where N ̸= 0 is divisible by m. Furthermore, as both sides are degree-wise
derived (q− 1)-complete, the localisation can be replaced by (−)r1/N s

^

(q−1) instead. We’ve seen
in the proof of Lemma 4.24 that the complex q9Hdg˚

R/A,□/(q
m − 1) satisfies the conditions of

Lemma 4.25. Hence the functors (−)^p and (−)r1/N s
^

(q−1) commute with taking cohomology,
and all completions can be computed as underived completions.

Let’s consider p-completions first. Let α := vp(m) be the exponent of p in the prime
factorisation of m. Both Fm/pα ◦ Vm/pα = m/pα and Vm/pα ◦ Fm/pα = rm/pαsqpα are invertible
over ZpJq − 1K, hence

Fm/pα :
`

q9WmΩ
˚
R/A

˘^

(p,q−1)

„=−!
`

q9WpαΩ
˚
R/A

˘^

(p,q−1)

(where we take the degree-wise derived completion) is an isomorphism. The same conclusion
holds for H˚(q9Hdg˚

R/A,□/(q
m − 1))^p ! H˚(q9Hdg˚

R/A,□/(q
pα − 1))^p . So we’re reduced the

assertion to (bα), which we already know.
The argument for (−)^(q−1) is similar: Both Fm ◦ Vm = m and Vm ◦Fm = rmsq are invertible

in Zr1/N sJq − 1K, hence we only need to check that

q9W1Ω
˚
R/A

“

1
N

‰^

(q−1)
−! H˚

`

q9Hdg˚
R/A,□/(q − 1)

˘“

1
N

‰^

(q−1)

is an isomorphism. By Proposition 3.12(a), the left-hand side is just Ω˚
R/Ar1/N s, as is the

right-hand side by inspection. The map between them is clearly the identity on Rr1/N s in
degree 0 and compatible with the differential-graded algebra structures by construction, hence
it must be the identity on Ω˚

R/Ar1/N s by the universal property of de Rham complexes.

§4.6. The arithmetic fracture square for q-de Rham–Witt complexes

To finish this section, we’ll prove two corollaries that allow us to identify the arithmetic fracture
square (in the sense of 4.18) for q9WmΩR/A. These results won’t play any role in the present
article, but they will be used quite a lot in the sequel rWag25bs.
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4.37. Corollary. — Let R be a smooth A-algebra, let m ∈ N, and let N ̸= 0 be divisible by m.
For every prime p | N and every divisor d | m write m = pvp(m)mp and d = pvp(d)dp. Let also

ϕp/A : ΩR/A bL
A,ψp A −!

`

ΩR/A
˘^

p

denote the relative Frobenius coming from the identification (ΩR/A)
^
p » RΓcrys((R/p)/Âp). Then

there exists a functorial pullback diagram

q9WmΩR/A
∏
p|N

∏
dp|mp

´

ΩR/A bL
A,ψp

vp(m)dp Arqs

¯^

p
/Φdp

`

qp
vp(m)˘

∏
d|m

ΩR/A bL
A,ψd A

“

1
N , q

‰

/Φd(q)
∏
p|N

∏
d|m

´

ΩR/A bL
A,ψd Arqs

¯^

p

“

1
p

‰

/Φd(q)

(ghm/d)d|m ≒ ´

ϕ
vp(m/d)

p/A

¯

p|N, d|m

Proof. Using Corollary 3.34 and Proposition 4.2, we can identify the bottom left and top right
corner with q9WmΩR/Ar1/N s and

∏
p|N (q9WmΩR/A)

^
p , respectively. In view of the arithmetic

fracture square from 4.18, it only remains to show the following:
(⊠) The following diagram commutes:

∏
p|N

`

q9WmΩR/A
˘^

p

∏
p|N

∏
dp|mp

´

ΩR/A bL
A,ψp

vp(m)dp Arqs

¯^

p
/Φdp

`

qp
vp(m)˘

∏
p|N

`

q9WmΩR/A
˘^

p

“

1
p

‰

∏
p|N

∏
d|m

´

ΩR/A bL
A,ψd Arqs

¯^

p

“

1
p

‰

/Φd(q)

»

(4.2)

´

ϕ
vp(m/d)

p/A

¯

p|N, d|m

»

(ghm/d)p|N, d|m

To prove (⊠), fix a prime p and a divisor d | m. Let also α := vp(m) and i := vp(d) for short.
By unravelling the proof of Lemma 4.36, we see that the following diagram commutes:

q9WmΩ
˚
R/A

´

q9WpαΩ
˚
R/A bArqs,ψp

αdp Arqs/Φdp
`

qp
α˘
¯^

p

´

Ω˚
R/A bA,ψd Arqs/Φd(q)

¯^

p

ghm/d

ghpα/pi

Also let D = D(π) be a PD-envelope as in 4.34 and Ω̆˚
D/A the associated PD-de Rham complex.

By unravelling 4.34, to finish the proof of (⊠), it will be enough to show that

`

q9WpαΩ
˚
R/A

˘^

p

´

Ω̆˚
D/A bA,ψpα Arqs/(qp

α − 1)
¯^

p

´

Ω˚
R/A b

A,ψpi
Arqs/Φd(q)

¯^

p

´

Ω̆˚
D/A bA,ψpα Arqs/(qp

α − 1)
¯^

p

ghpα/pi

»

(4.34)

ϕα−i
p/A
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commutes. By the universal property of the PD-de Rham complex, it’s enough to show
commutativity in degree 0. But the map

spα/A : D bA,ψpα Arqs/(qp
α − 1) −! q9Wpα(D/A)

considered in 4.34 satisfies ghpα/pi ◦ spα/A = ϕα−iD/A, where now ϕD/A : D bA,ψp A! D denotes
the linearised Frobenius of the δ-A-algebra D. From this observation it becomes obvious that
the diagram above commutes in degree 0, thus in any degree. This finishes the proof of (⊠).

Let rFm/d : q9WmΩ
˚
R/A ! q9WdΩ

˚
R/A be given by (m/d)iFm/d in degree i, so that rFm/d is a

map of differential-graded Arqs-algebras. The effect of rFm/d on arithmetic fracture squares can
be determined using the following corollary.

4.38. Corollary. — Let R be a smooth A-algebra, let p be a prime and let ϕp/A denote the
crystalline Frobenius as in Corollary 4.37. Then the following diagram commutes:

`

ΩR/A bL
A,ϕα Arqs/(qp

α − 1)
˘^

p

`

q9WpαΩR/A
˘^

p

`

ΩR/A bL
A,ϕα−1 Arqs/(qp

α−1 − 1)
˘^

p

`

q9Wpα−1ΩR/A
˘^

p

»

(4.2)

ϕp/A rFp

»

(4.2)

Proof. Let D = D(π) be a PD-envelope as in 4.34 and let ϕD/A : D bA,ϕ A ! D denote the
relative Frobenius of the δ-A-algebra D. By the universal property of the PD-de Rham complex,
it induces a map of differential graded algebras

`

Ω̆˚
D/A bA,ϕ A

˘^

p
!

`

Ω̆˚
D/A

˘^

p
,

which represents the E∞-Arqs-algebra map ϕp/A. Again by the universal property, whether this
map of PD-de Rham complexes is compatible with rFp can be checked in degree 0. Therefore, it’s
enough to check that the comparison map spα/A from 4.34 satisfies Fp ◦ spα/A = spα−1/A ◦ ϕD/A,
which it does by construction.

76



§5. A no-go result for functoriality of the q-Hodge complex

§5. A no-go result for functoriality of the q-Hodge complex
In this final section, we’ll show the following result, which perhaps comes as an unwelcome
surprise after our very promising Theorem 4.27.
5.1. Theorem. — Let A be a perfectly covered Λ-ring (in the sense of Remark 2.47). If A is
not a Q-algebra, then there can be no functor

q9Hdg−/A : SmA −! D̂(q−1)

`

AJq − 1K
˘

from the category of smooth A-algebras into the ∞-category of derived (q−1)-complete AJq−1K-
modules in such a way that for all m ∈ N there’s also a functorial graded AJq − 1K-module
isomorphism

`

q9WmΩ
˚
−/A

˘^

(q−1)

„=−! H˚
`

q9Hdg−/A/
L(qm − 1)

˘

and for all d | m the canonical projection q9Hdg−/A/
L(qm − 1) ! q9Hdg−/A/

L(qd − 1) induces
the Frobenius Fm/d on q-de Rham–Witt complexes.
5.2. Remark. — Over Q, the q-derivatives from 4.7 can be expressed in terms of the usual
derivatives; see the argument in rSch17, Lemma 4.1s. Hence in this case the q-Hodge complex
can be made functorial, but it’s no more interesting than the usual de Rham complex itself.
5.3. Remark. — In rMW24s, we’ll explain how in certain situations a functorial derived
q-Hodge complex can be constructed. This will constitute a partial fix for the non-existence
result in Theorem 5.1.

We’ll now start the proof of Theorem 5.1.
5.4. Derived q-Hodge complexes. — Suppose a functor as in Theorem 5.1 would exist.
Let AniAlgA denote the ∞-category of animated A-algebras in the sense of Clausen. It
can be explicitly constructed as the ∞-categorical localisation of the category of simplicial
commutative A-algebras at all weak equivalences. Via left Kan extension from polynomial
A-algebras (formerly known as forming the non-abelian derived functor), we can define a derived
q-Hodge complex

Lq9Hdg−/A : AniAlgA −! D̂(q−1)

`

AJq − 1K
˘

.

5.5. q-de Rham–Witt filtrations. — By left Kan extending (or non-abelian deriving)
the Postnikov filtration τ⩽i(q9Hdg−/A/L(qm − 1)), we obtain for any animated A-algebra R an
ascending filtration Filq9WΩ

˚ (Lq9HdgR/A/
L(qm−1)) which we call the q-de Rham–Witt filtration.

Since the Postnikov filtration is exhaustive, we get

Lq9HdgR/A/
L(qm − 1) »

´

colim
i⩾0

Filq9WΩ
i

`

Lq9HdgR/A/
L(qm − 1)

˘

¯^

(q−1)
.

Furthermore, if a functorial isomorphism (q9WmΩ
˚
−/A)

^

(q−1)
„= H˚

`

q9Hdg−/A/
L(qm − 1)) exists,

then associated graded of the q-de Rham-Witt filtration is given by

grq9WΩ
i

`

q9HdgR/A/
L(qm − 1)

˘

»
`

Lq9WmΩ
i
R/A

˘^

(q−1)
r−is .

Let us also remark that the 0th filtration step of the q-de Rham–Witt filtration is always given
by Filq9WΩ

0 (q9HdgR/A/
L(qm − 1)) » q9Wm(R/A)

^

(q−1). Indeed, using the above description of
the associated graded grq9WΩ

0 , we only have to show that Lq9Wm(R/A) ! q9Wm(R/A) is an
equivalence. Base change along the faithfully flat map A! A∞ and Lemma 2.46 reduce this
to a question about absolute q-Witt vectors, which follows inductively from Proposition 2.15.
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Proof of Theorem 5.1. If A is not a Q-algebra, then we find a prime p such that Âp ̸„= 0.
Consider R := (OC bZ A)

^
p , where OC is the ring of integers in a complete algebraically closed

extension of Qp. Note that R ̸„= 0 since OC is the p-completion of a free Z-module. We also
note that OC is an integral perfectoid ring in the sense of rBMS18, Definition 3.5s, so we can
write OC

„= Ainf(OC)/ξ for some nonzerodivisor ξ ∈ Ainf(OC) such that δ(ξ) is a unit. Here δ
refers to the usual δ-structure on Ainf(OC). If we define W := (Ainf(OC) bZ A)

^
p , then ξ is also

a nonzerodivisor on and W/ξ „= R.
As we’ll see in Lemma 5.6 below, (Lq9HdgW/A)

^
p » W Jq − 1K; in particular, it is static in

the sense of 1.10. Similarly, (Lq9HdgR/A)
^
p is static and flat over ZpJq − 1K. Hence all derived

quotients (−)/L(qm − 1) can be identified with actual quotients. We’ll now play around with
the filtrations on (Lq9HdgR/A)

^
p /(qm − 1) and (Lq9HdgR/A)

^
p /(qm − 1) for m = 1 and m = p

and derive a contradiction.
Case 1: m = 1. Consider the element ξ ∈ W Jq − 1K „= (Lq9HdgW/A)

^
p . Since ξ vanishes

under q9W1(W/A) ! q9W1(R/A) and the diagram

q9W1(W/A) Filq9WΩ
0

`

Lq9HdgW/A/(q − 1)
˘ `

Lq9HdgW/A
˘^

p
/(q − 1)

q9W1(R/A) Filq9WΩ
0

`

Lq9HdgR/A/(q − 1)
˘ `

Lq9HdgR/A
˘^

p
/(q − 1)

commutes, we see that ξ vanishes in (Lq9HdgR/A)
^
p /(q−1) and so ξ must be divisible by (q−1)

in (Lq9HdgR/A)
^
p .

Case 2: m = p. Consider the element ϕ(ξ)−Φp(q)δ(ξ) ∈W Jq−1K „= (Lq9HdgW/A)
^
p , where

ϕ denotes the Frobenius of the δ-ring Ainf(OC). Then the image of ξ modulo qp − 1 agrees
with the image of the Teichmüller lift τp(ξ) under q9Wp(W/A) ! (Lq9HdgW/A)

^
p /(qp − 1).

Indeed, this follows from an unravelling of first the proof of Lemma 5.6(a) and then the
map from Lemma 2.34: We must check that εp(τp(ξ)) = −δ(ξ), which follows from the fact
that the section sp : Ainf(OC) ! Wp(Ainf(OC)) coming from the δ-structure on Ainf(OC)
satisfies sp(ξ) = (ξ, δ(ξ)) = τp(ξ) + Vp(δ(ξ)). Now the Teichmüller lift τp(ξ) vanishes under
q9Wp(W/A) ! q9Wp(R/A). Since the diagram

q9Wp(W/A) Filq9WΩ
0

`

Lq9HdgW/A/(q
p − 1)

˘ `

Lq9HdgW/A
˘^

p
/(qp − 1)

q9Wp(R/A) Filq9WΩ
0

`

Lq9HdgR/A/(q
p − 1)

˘ `

Lq9HdgR/A
˘^

p
/(qp − 1)

commutes, it follows that the image of ϕ(ξ) − Φp(q)δ(ξ) vanishes in (Lq9HdgR/A)
^
p /(qp − 1)

and so it must be divisible by (qp − 1) in (Lq9HdgR/A)
^
p .

We’re ready to derive our contradiction. In the mod p reduction (Lq9HdgR/A)
^
p /p, we see

that ϕ(ξ) − Φp(q)δ(ξ) ≡ ξp − (q − 1)p−1δ(ξ) mod p is divisible by qp − 1 ≡ (q − 1)p mod p.
Since ξp is also divisible by (q − 1)p and (Lq9HdgR/A)

^
p /p is flat over FpJq − 1K, it follows

that δ(ξ) is divisible by (q − 1). In particular, δ(ξ) vanishes in (Lq9HdgR/A)
^
p /(p, q − 1). By

Lemma 5.6(c) we see that δ(ξ) already vanishes in R/p. Since δ(ξ) is a unit by assumption,
this forces R/p „= 0, hence R „= 0 by the derived Nakayama lemma rStacks, Tag 09B9s. This is
the desired contradiction!
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The following technical lemma was used in the proof.

5.6. Lemma. — With notation as above, the following are true:
(a) (Lq9HdgW/A)

^
p » W Jq − 1K.

(b) (Lq9HdgR/A)
^
p is a static AJq − 1K-module and flat over ZpJq − 1K.

(c) The map R/p „= q9W1(R)/p ! (Lq9HdgR/A)
^
p /(p, q − 1) induced by the 0th step in the

q-de Rham–Witt filtration is injective.

Proof. It’s well-known that the p-completed cotangent complex (LAinf(OC)/Zp)
^
p vanishes. Hence

the graded pieces of the p-completed q-de Rham–Witt filtration for (Lq9HdgW/A/L(q− 1))^p are

grq9WΩ
i

`

Lq9HdgW/A/
L(q − 1)

˘^

p
»
`

LΩiAinf(OC)/Zp bL
Z A

˘^

p
r−is » 0

for i > 0. It follows that (Lq9HdgW/A)
^
p /L(q − 1) » q9W1(W/A)

^
p » W . In general, for any

derived (p, q−1)-complete object M ∈ D̂(p,q−1)(ZpJq−1K) we have M » Rlimα⩾0M/L(qp
α−1).

Indeed, by the derived Nakayama lemma rStacks, Tag 0G1Us this can be checked after applying
(−)/Lp, and then M/L(p, qp

α − 1) » M/L(p, (q − 1)p
α
), so we recover the condition that M/Lp

is derived (q − 1)-complete. In particular, we obtain a map

Rlim
α⩾0

q9Wpα(W/A)
^

(p,q−1) −! Rlim
α⩾0

`

Lq9HdgW/A
˘^

p
/L(qp

α − 1) .

where the limit on the left-hand side is taken along the q-Witt vector Frobenii. Here’s the only
time we use our assumption that Lq9HdgW/A/

L(qp
α+1 − 1) ! Lq9HdgW/A/

L(qp
α − 1) induces

the Frobenii on q-de Rham–Witt complexes. Using Lemma 2.46 and Corollary 2.37, we get

Rlim
α⩾0

q9Wpα(W/A)
^

(p,q−1) »

´

Rlim
α⩾0

W rqs/(qp
α − 1)

¯^

(p,q−1)
» W Jq − 1K

In summary, we’ve constructed a map W Jq − 1K ! (Lq9HdgW/A)
^
p . By construction, after

(−)/L(q−1) this map is the identity on W , hence it is an isomorphism by the derived Nakayama
lemma. This finishes the proof of (a).

For (b) and (c), we argue as above to see that the graded pieces of the p-completed q-de
Rham–Witt filtration for (Lq9HdgR/A/

L(q − 1))^p are

grq9WΩ
i

`

Lq9HdgR/A/
L(q − 1)

˘^

p
»
`

LΩiOC/Zp bL
Z A

˘^

p
r−is » 0

By a standard fact about perfectoid rings (see rBMS19, Proposition 4.19s for example), we
have (LΩiOC/Zp)

^
p r−is » OC for all i ⩾ 0. Hence the graded pieces above are all equivalent to

R. In particular, they are all static and p-torsion free. Inductively, this implies that all steps in
the p-completed q-de Rham–Witt filtration must be static and p-torsion free. Furthermore, the
transition maps must be injective. The same conclusion holds modulo p, which immediately
shows (c). For (b), we conclude that (Lq9HdgR/A)

^
p /L(q − 1) is the derived p-completion of a

static p-torsion free Zp-module, hence it must be static and p-torsion free itself. In general, if
M ∈ D̂(q−1)(ZJq − 1K) is derived (q − 1)-complete and M/L(q − 1) is static, then M itself is
static. Indeed, the map Hi(M)/(q − 1) ! Hi(M/L(q − 1)) is always injective; together with
rStacks, Tag 09B9s this implies Hi(M) „= 0 for i ̸= 0, hence M must indeed be static. It
follows that (Lq9HdgR/A)

^
p is static. Moreover, p-torsion freeness implies that (Lq9HdgR/A)

^
p

is (q − 1)-completely flat in the sense of 1.10. Since ZpJq − 1K is noetherian, it follows that
(Lq9HdgR/A)

^
p is flat on the nose. This finishes the proof of (b).
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