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Abstract. — Hodge-filtered derived de Rham cohomology of a ring R can be
described (up to completion and shift) as the graded pieces of the even filtration
on HC™(R). In this paper we show a deformation of this result: If R admits a
spherical Eo-lift, then the graded pieces of the even filtration on TC™ (ku ® Sg/ku)
form a certain filtration on the g-de Rham cohomology of R, which g-deforms the
Hodge filtration.

We also explain how the associated Habiro—Hodge complex from [Wag25] can be
described in terms of the genuine equivariant structure on THH(KU ® Sg/KU). As
a special case, we’ll obtain homotopy-theoretic construction of the Habiro ring of a
number field from [GSWZ24].
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§1. INTRODUCTION

§1. Introduction

Let ku denote the connective complex K-theory spectrum. The ring o (ku™ 1) =~ ku’(BSY)
contains a canonical element g, which corresponds to the standard representation of S acting
via rotations on C. In this paper we explain that this is the “same ¢” as in g-de Rham
cohomology.

§1.1. g-Hodge filtrations from THH over ku

Many interesting cohomology theories in arithmetic geometry can be obtained as graded pieces
of motivic filtrations on localising invariants. In the case of de Rham cohomology, this is
particularly well understood: The corresponding localising invariant is given by Hochschild
homology (and its cousins, negative cyclic and periodic homology), the motivic filtration is
given by the even filtration of Hahn—Raksit-Wilson [HRW22].

More precisely, combining [Ant19, Theorem 1.1] and [HRW22, Theorem 5.0.2], one has the
following result:

1.1. Theorem (Antieau-Hahn-Raksit—-Wilson). — Let R be a quasi-syntomic ring. Then
completion of the Hodge-filtrered derived de Rham complex of R agrees (up to shift) with the
the graded pieces of the S'-equivariant even filtration on HC™(R/Z):

ﬁlf{dg a]?{R/Z = 2_2* gr:V,hsl HC_(R/Z) :

The goal of this paper is to show a deformation of this theorem, in which Z gets deformed
to ku and de Rham cohomology gets deformed to g-de Rham cohomology.

1.2. Theorem (see Theorem 4.27). — Let R be a quasi-syntomic ring such that 2 € R*.
Assume that R admits a lift to a connective Eq-ring spectrum Sg such that SR ® Z ~ R. Then
the derived q-de Rham complex qg-dRp,z can be equipped with a q-deformation of the Hodge
filtration 1} pq, -dRp/z, and the completion of this filtration agrees (up to shift) with the
graded pieces of the S'-equivariant even filtration on TC™ (ku ® Sg/ku):

17 Hag Q‘&RR/Z ~ Y g o TC™ (ku®Sg/ku).

ev,h

Before we discuss Theorem 1.2, let us comment on the origins of the result and highlight
some of the preceding work of Arpon Raksit and Sanath Devalapurkar that this theorem
crucially relies on.

1.3. Relation to work of Raksit. — In the case where Sg is the flat spherical polynomial
ring S[z], Theorem 6.10 was first shown in unpublished work of Raksit, who also gave an
explicit description of the g-deformed Hodge filtration in this case:

1.4. Theorem (Raksit, unpublished; see Theorem 6.10). — Let q—QZ[x] /2.0 be the coordinate-
dependent q-de Rham complez, where the choice of coordinates is the identity O: Z|x] — Z[x].
FEquip q—QE[m]/Z o with the filtration by subcomplexes ﬁlg_Hdg’D q—QEM/Z O= q‘QZ[z]/Z o and

i i v i
A1y Hag,0 - )/2,0 = ((q —1)'Z[z]lg — 1] *= (¢ — 1) 'Z[z][q — 1] dx)
for allt > 1. Then

iy Hag,0 - Vpay/zn = X7 gy psr TC™ (kulz] /ku) .


https://arxiv.org/pdf/1808.05246#theorem.1.1
https://arxiv.org/pdf/2206.11208.pdf#block.5.0.2
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To the author’s knowledge, Raksit’s result marks the discovery of the relation between ¢-de
Rham cohomology and TC™(—/ku).

Moreover, Raksit shows a generalisation of Theorem 1.4, in which ku can be replaced by
the connecitve cover 750 F of any 2-periodic Eq-ring spectrum E. The result is a version of the
g-de Rham complex, in which the differentials send 2™ +— (m)gz™ ! dz, where (m)g denotes
the reduced m-series of the formal group of E. It would be very interesting to see whether such
a variant of ¢-de Rham cohomology can be made coordinate-independent. Some speculation
about the (im-)possibility of this can be found in [DM23, §4.3].

1.5. Relation to work of Devalapurkar. — The crucial input in our proof of Theorem 1.2
is the following theorem that was conjectured by Lurie and Nikolaus (for all p) and finally
proved (for p > 2) in Devalapurkar’s thesis:

1.6. Theorem (Devalapurkar [Dev25, Theorem 6.4.1]). — For primes p > 2, there exists an
S x L, -equivariant equivalence of Eoo-ring spectra

THH (Zy[¢p)/Spla — 11);, — 720 (ku'“") .

This theorem allows us to construct a comparison between the p-completions of ¢g-de Rham
cohomology and TC™(—/ku), as was observed both by Devalapurkar and the author (see
[Dev25, Theorem 6.4.2] and the discussion afterwards as well as [MW24], arXiv versions < 3).
The idea is to construct an S'-equivariant map THH(R[(,]/S[q — 1]) — THH(ku ® Sg/ku)!cr
as follows:

THH(R[Cp]/S[g — 1]) ---------mmmmmmmmmmm oo » THH(ku ® Sp/ku)!“»

4 %

THH(Sg) ® THH(Z,[¢,]/S[q — 1]) — THH(SR)'? @ ku'®» —— (THH(Sg) ® ku)"”

Here the bottom left arrow is given by the cyclotomic Frobenius on THH(Sg) and the map from
Theorem 1.6. Now the St-equivariant even filtration on THH(R[(,]/S[q—1]) yields p-completed
g-de Rham cohomology by a variant of the arguments in [BMS19, §11], as we’ll explain in
§A. On the other hand, (THH (ku ® Sg/ku)t»)"S" ~ TP (ku® Sg/ku), is already close to the
p-completion of TC™ (ku ® Sg/ku). After some massaging, this will yield Theorem 1.2.

Let us now give several remarks on Theorem 1.2. We begin with the notions of even
filtrations that we use.

1.7. Even filtrations. — Since Sy is only assumed to be Es, we cannot use the even
filtration from [HRW22] on TC™ (ku ® Sg/ku). Instead we’ll work with Pstragowski’s perfect
even filtration [Pst23], which is already defined for E;-ring spectra.

We'll also need an S'-equivariant version of Pstraggowski’s construction, which first appears in
[AR24, Definition 2.55] but is originally due to Raksit: We let Sey = fil%, S and T, = fil%, S[S!]
denote the even filtrations of S and S[S!], respectively, and then define a filtered version of
S1-fixed points via (—)"Tev := Hom# (Sev,—), where Hom# = denotes the internal Hom in
filtered Tey-modules. Finally, we let

fil, g1 TC™ (lku ® Sp/ku) = (filz, THH(ku ® S /ku)"™

where fil}, THH(ku ® Sr/ku) denotes the non-equivariant even filtration of THH(ku ® Sg/ku),
regarded as a left module over itself.


https://arxiv.org/pdf/2304.04739.pdf#page=32
https://sanathdevalapurkar.github.io/files/thesis.pdf#sublemma.6.4.1
https://sanathdevalapurkar.github.io/files/thesis.pdf#sublemma.6.4.2
https://arxiv.org/pdf/1802.03261#section.11
https://arxiv.org/pdf/2411.19929.pdf#theorem.2.55
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1.8. The solid even filtration. — We’ll first show a p-complete version of Theorem 1.2
(see Theorem 4.8) and then deduce the global theorem via an adelic gluing argument. For the
p-complete version, it will be very convenient for us to work in the setting of solid condensed
spectra in the sense of Clausen—Scholze (see 2.1-2.2 for a brief recap).

To this end, we’ll develop a variant of Pstragowski’s perfect even filtration in the solid setting
in §2. The idea is simple: For an E;-algebra R in solid condensed spectra, the oo-category of
left R-modules has a compact generator given by Nullg := cofib(R[{c0}] — R[N U {c0}]), the
free left R-module on a nullsequence. We then call a left R-module solid perfect even if it is
contained in the sub-co-category generated by Nullg under even shifts, extensions, and retracts.
With this definition, we’ll adapt the constructions from [Pst23] in a straightforward way.

As we’ll see in §2, not all of the nice properties of the perfect even filtration carry over
to the solid case, since Pstragowski frequently exploits the fact that perfect even modules
are dualisable, which fails in the solid setting. However, under certain additional nuclearity
assumptions, everything works as expected. These assumptions are satisfied in the cases we're
interested in. In particular, they are satisfied in the discrete case (see Theorem 2.9), and so our
construction will recover Pstragowski’s.

Let us now discuss to what extent the assumptions in Theorem 1.2 are optimal.

1.9. The theorem for E;-lifts. — For the perfect even filtration of THH(ku® Sg/ku) to be
defined, it needs to be an Ej-algebra, which requires Sg to be Es-algebra. However, in the case
where R only admits an Eq-lift Sg, it can still happen that THH(ku ® Sg/ku), is concentrated
in even degrees for some primes p. More generally, it can happen that S admits a cosimplicial
resolution by Ej-algebras Sg — Spge for which THH(ku ® Sge /ku), is even. In this case, we
can define an ad-hoc even filtration by

filZ, THH(ku ® Sg/ku);) = lim 2. THH(ku © Se /ku);

and then one can put fil] ;. TC™ (ku®Sg/ku), = (fil}, THH(ku ® Sg/ku),)"ev again. This
agrees with lima 759, TC™ (ku ® Sge /ku);,.

It turns out that the p-complete version of Theorem 1.2 is still true for these ad-hoc even
filtrations. Moreover, we’ll see in Theorem 4.17 that the filtration ﬁl;,Hdg(q—dR R /Z)g admits a

very simple explicit description in this case. We’ll use this in §6.2 to prove Theorem 1.4, and in
joint work with Meyer [MW24] to compute 7, TC™ ((ku ® S/p*)/ku).

1.10. The theorem at p = 2. — We expect that the assumption 2 € R* in Theorem 1.2
can be removed once Theorem 1.6 is proved for p = 2 as well. In any case, the E;-version of
the theorem discussed above can be proved unconditionally for p = 2.

1.11. Are lifts to ku enough? — It’s natural to ask if the Eo-lift S in Theorem 1.2 can
be replaced by the weaker datum of an Eo-ku-algebra kupg satisfying kugp ®yy Z ~ R. Although
we don’t know any counterexample, we consider this unlikely. At the very least, the E{-version
of the theorem is provably wrong if only an E;-lift kug is assumed. Here’s a counterexample:
Let Z,{x}« denote the free p-complete perfect J-ring on a generator x and let R := Zp{x}so /2.
Since Zp{z}o is a perfect d-ring, it lifts uniquely to ku (even to the sphere spectrum), and so
kup = kuz, (4}, /x can be equipped with an E;-ku-algebra structure via [Ang08, Corollary 3.2].
However, it can be shown that the filtration fil} 114,(¢-dRg/z)p from Theorem 4.17 is not a
g-deformation of the Hodge filtration in this case (see [Wag25, Example 4.24]), and so the
p-complete version of Theorem 1.2 cannot hold in this case.


https://arxiv.org/pdf/math/0612164#theorem.3.2
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.4.24
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This explains why we don’t expect a lift to ku to be enough. We do expect, however, that
it’s enough to have a lift jg to the image of J-spectrum j := 7>0(Sk(1)). Indeed, if the diagram

THH(j),

|

j —— THH(Zp),

were Sl-equivariantly commutative, we could use the construction discussed below Theorem 1.6
to get an S'-equivariant map THH(R[(,]/S[g — 1]) — THH(ku®; jr/ku)!“?, which could then
be used to show the p-complete version of Theorem 1.2 with Si replaced by jg.

Unfortunately, the diagram above is not S'-equivariantly commutative, similar to what
happens for THH(Z,) — Z, — THH(IF,). But the issue doesn’t seem to be too serious. For
example, a chromatic height-2 analogue of [DR25, Theorem 0.3.6] would likely fix this, in the
same way as the cited result fixes the problems for THH(Z,) — Z, — THH(F)).

§1.2. Habiro descent, homotopically

Let us now discuss the g-deformed Hodge filtration ﬁl;—Hdg q¢-dRp/7 from Theorem 1.2. Tt’s
natural to ask whether the g-de Rham complex in general can be equipped with a g-deformation
of the Hodge filtration. This question is studied in the companion paper [Wag25]. It turns
out that filf y4, ¢-dRp/z is a g-Hodge filtration in the sense of [Wag25, Definition 3.2]; this
roughly means that the rationalisation and the rationalised p-completions of ﬁl;_Hdg q-dRp/z
behave as expected. It is not always possible to find a ¢g-Hodge filtration (the ring from 1.11 is
a counterexample), so Theorem 1.2 provides a large source of examples where it works.

To any g-Hodge filtration on ¢-dRp/z we associate a q-Hodge complex in [Wag25, 3.5]. It is
defined as

g-Hdgp; == colim (ﬁlg,Hdg g-dRpz i1l g-dRp )(Aq \
(we’ve abusingly suppressed the choice of ¢g-Hodge filtration in the notation ¢-Hdgp /2 but it
will always be clear from the context). As a straightforward corollary of Theorem 1.2, one finds
that
¢-Hdggz[87'] =~ £ gr¥, 51 TC™ (KU ® Sp/KU).

In [Wag25, Theorem 3.11] we show that the g-Hodge complex ¢-Hdgp 7 is, in a non-trivial
way, the (¢ — 1)-completion of an object q—Hng/Z, which lives over the Habiro ring
— 3 A
H = %&Z[q](qul) .
We call ¢-Hdgr/z the Habiro—Hodge complez. Our second main goal in this paper is to
show that in the situation where the g-Hodge filtration ﬁl’qudg q-dRpg/7 comes from homotopy

theory by means of Theorem 1.2, the Habiro-Hodge complex ¢-Hdgp,z can also be described
homotopically.

1.12. Cyclonic spectra. — This description will involve some genuine equivariant homotopy
theory. Since this is not standard in arithmetic geometry, we’ll give a review of the necessary
parts of the theory in §5.1. We’ll then work with in the oo-category of cyclonic spectra CycnSp,


https://arxiv.org/pdf/2505.02218.pdf#block.0.3.6
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.3.2
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.3.5
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.3.11
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introduced by Barwick—Glasman [BG16]; see 5.20. Roughly, a cyclonic spectrum is a spectrum
X with an S'-action, equipped with compatible genuine enhancements of the action of the
finite cyclic subgroups C,, C S' for all m € N.

The spectrum THH(Sr) admits a natural cyclotomic structure, which induces a cyclonic
structure. Similarly, ku admits a natural genuine S'-equivariant structure, which again induces
a cyclonic structure. Hence THH(Sg) ® ku ~ THH(ku ® Sg/ku) can be equipped with a
cyclonic structure too. We define the m* topological cyclonic homology Definition 5.45 as

TC~(™ (ku ® Sp/ku) = (THH(ku ® Sp/ku)Cm )" /)

Here (—)® denotes the genuine C,,-fixed points and (—)"(5'/Cm) the homotopy fixed points of

the residual action. We note that TC_(m)(— /ku) is similar to the construction of topological
restriction homology TR(—); however, the restriction maps along which TR(—) is the limit do
not exist for TC~(™) (—/ku), and TR(—) doesn’t take the residual actions into account.

The same constructions work for KU, and so we can define TC~™ (KU ® Sg/KU) analo-
gously. To obtain the Habiro-Hodge complex, we’ll construct an appropriate even filtration on
TC~(™(KU ® Sp/KU).

1.13. Genuine equivariant even filtrations. — For a cyclonic E;-algebra X whose
geometric fixed points X ®¢™ are bounded below for all m € N, the genuine fixed points can be
recovered from the geometric fixed points via the formula

XCm i> eq(H(X(DCd)hCm/d g H H ((X'@Cd)tcp)h‘cm/pd>

dlm ¢ p pdlm

(see Lemma 5.28). In the case where X is an E;-structure in CycnSp, this allows us to define an
even filtration fil}, o X Cm as follows: Equip each X®¢ with the non-equivariant perfect even
filtration, apply the filtered versions of (—)"“m/¢ and (—)*“» from [AR24, §2.3], then finally
take the equaliser in filtered objects.

In this way we can construct fil}, o THH(ku®Sg/ ku)®". The same construction cannot
be used for fil, o THH(KU® Sr/KU)¢", as THH(KU ® Sg/KU) is not bounded below, but
instead we can simply use the filtered localisation of fil}, o THH(ku® Sg/ ku)“m at the Bott
element . Finally, we put

fil¥, ¢ TC~0™ (KU ® Sp/KU) = (£l}, ¢, THH(KU @ S/KU)Cm )T/ Cmler

ev,Cry,

(see 5.59 for the details).

While these even filtrations are defined in a rather ad-hoc way, we expect that there exists
a more canonical construction. An intrinsically defined genuine equivariant even filtration was
constructed by Keita Allen and Lucas Piessevaux [AP25]; the author has also been informed of
independent work in progress by Jeremy Hahn. We hope that it will agree with our constructions
in the cases at hand.

With these even filtrations, we can finally formulate the second main result of this paper.

1.14. Theorem (see Theorem 5.63). — The Habiro-Hodge complex g-Hdgp 7 associated to
the q-Hodge filtration ﬁl’;_Hdg q-dRpg/z from Theorem 1.2 satisfies

g-Hdgpyz 5] = =72 g (1im I3, ¢, O™ (KU @S/KU)) .


https://arxiv.org/pdf/2411.19929.pdf#subsection.2.3
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As a consequence, we obtain a homotopical construction of the Habiro ring of a number
field Ho1/a) from [GSWZ24]:

1.15. Corollary (see Corollary 6.15). — Let F' be a number field and let A be divisible
by 6 and by the discriminant of F. Let Sp,[1/a] denote the unique lift of Op[1/A] to an étale
extension of S. Then
~ h(S/Cm,
Ho, (1741 = mo( lim (THH(KU ® S, (1/4)/KU) )"/

lim
meN
§1.3. Organisation of this paper

In §2, we introduce a version of Pstragowski’s perfect even filtration in the solid setting. In
§3, we’ll study the solid even filtration on THH. In particular, we’ll show that it can often be
computed by even cosimplicial resolutions, and satisfies the expected base change properties.

In §4, we’ll show Theorem 1.2. Subsections §§4.1-4.3 are devoted to the p-completed version
of the theorem; the global version will be deduced in §4.4 via an adelic gluing argument. In §5,
we show Theorem 1.14. In subsections §§5.1-5.3, we set up the formalism of cyclonic spectra
and explain how ku fits into this. In §5.4 we’ll show the Habiro descent theorem.

In §6 we’ll discuss several examples. It is a priori not clear how to find rings R to which
Theorem 1.2 can be applied. In §6.1 we’ll construct a large supply of such rings R. In §6.2 we
prove Theorem 1.4 and in §6.3 we show how the Habiro ring of a number field can be recovered
from our formalism.

Finally, there will be three appendices. In §A, we discuss a [BMS19]-style construction of
the ¢-de Rham complex. In §B, we give a proof of the folklore theorem that flat polynomial
rings over S in any number of variables admit an even Es-cell structure. In §C, we explain how
the equivariant Snaith theorem from [S?10] can be made Eo,, which will be needed in our
discussion of the genuine S'-equivariant structure on ku.

1.16. Notation and conventions. — Throughout the article, we freely use the language of
oo-categories and we’ll adopt the following conventions:

(a) Stable oco-categories. We let Sp denote the oco-category of spectra. For an ordinary
ring R, we let D(R) denote the derived oo-category of R. We often implicitly regard
objects of D(R) as spectra via the Eilenberg—MacLane functor H, but we’ll always suppress
this functor in our notation. For a stable oco-category C, we let Home(—, —) denote the
mapping spectra in C. The shift functor and its inverse will always be denoted by ¥ and
¥~! (even for D(R)), to avoid confusion with shifts in graded or filtered objects.

(b) Symmetric monoidal oco-categories. If no confusion can occur, we denote the tensor
unit by 1 and the tensor product by ®. Whenever we consider a symmetric monoidal
oo-category C which is stable or presentable, we always implicitly assume that the tensor
product commutes with finite colimits or arbitrary colimits, respectively. In the presentable
case, we let Hom,(—, —) denote the internal Hom in C and X := Hom, (X, 1) the dual
of an object X € C.

(¢) Graded and filtered objects. For a stable co-category C, we let Gr(C) and Fil(Sp)
denote the oo-categories of graded and (descendingly) filtered objects in C. The shift in
graded or filtered objects will be denoted (—)(1). An object with a descending filtration is
typically denoted

fl* X = (---<—ﬁ1”X<—ﬁ1”+1X<—---)
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and we let gr* X denote the associated graded, given by gr™ X = cofib(il"*! X — fil" X).
We mostly work with filtrations that are constant in degrees < 0 (such as the Hodge
filtration). In this case we’ll abusingly write fil* X = (fil° X « fil! X « -..); this should
be interpreted as the constant fil° X-valued filtration in degrees < 0.

If C is symmetric monoidal and the tensor product — ® — commutes with colimits
in both variables, we equip Gr(C) and Fil(C) with their canonical symmetric monoidal
structures given by Day convolution. We'll use the fact that Fil(C) ~ Mody s Gr(C),
where 1, denotes the tensor unit in Gr(C) and ¢ sits in graded degree —1; see e.g. [Rak21,
Proposition 3.2.9]. Under this equivalence, passing to the associated graded corresponds
to “modding out ¢7, i.e. the base change 1gy ®1q,[1] —-

We say that fil* X is an exhaustive filtration on X if X ~ colim,_,_ fil" X. We say
that a filtered object fil* X is complete if 0 ~ lim,,_,~ fil” X. We define the completion
fil* X := lim,, .o cofib(il*™™ X — fil* X). By construction, there’s a pullback square

i X — - filr X
| o

X X

We’ll often refer to this by saying that every filtration is the pullback of its completion.

Condensed mathematics. Whenever we use condensed mathematics, we work in the
light condensed setting. We’ll distinguish between the words static (“un-animated”) for
a spectrum concentrated in degree 0, and discrete (“un-condensed”) for a condensed
spectrum with the discrete topology.

Homotopy classes of ku™S". We denote by 8 € ma(ku) the Bott element and by
q € Wo(kuhsl) the class corresponding to the standard representation of S' on C. There’s a
unique complex orientation t € 7_y(ku® 1) satisfying ¢ —1 = Bt; then m, (ku™ l) = 7[5]1t]-
Here we purposely use the same symbol as for 1g;[t] above: We'll often regard graded
e (ku® 1) = Z[B][t]-modules as filtered objects using the apparent graded Z[t]-module
structure.

Arithmetic fracture squares and gluing. We’ll often use that for any spectrum X
and any positive integer N, there are canonical pullback squares

X H)A(p X H)?p
P pIN
_ J and . J
X0 — [[%,00 X[4) —— [ %[
p p|N

and we’ll call these arithmetic fracture squares.

Completed (g-)de Rham complexes. To avoid excessive use of completions, we adopt
the convention that all (¢-)de Rham or cotangent complexes relative to a p-complete
ring will be implicitly p-completed. So for example, while dRpg/z would denote the usual
derived de Rham complex of R, q-dRR/z, would denote the p-completed derived g-de
Rham complex of R.


https://arxiv.org/pdf/2007.02576#block.3.2.9
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§2. THE SOLID EVEN FILTRATION

§2. The solid even filtration

In this section we’ll sketch how to adapt Pstragowski’s perfect even filtration [Pst23] to Eq-
algebras in solid condensed spectra. This facilitates many p-completion arguments later on.
However, as we’ll see, not all of the nice properties of the perfect even filtration carry over to
the solid condensed case. But in the cases we need—and probably most cases of interest in
general—it works as expected. It would be desirable to develop a more complete (and perhaps
less naive) theory of the perfect even filtration in the condensed setting.

Before we begin, let us briefly recall the solid condensed setting. There are no properly
published sources yet, so we have to refer the reader to the recordings of [CS24] and the
unfinished notes [RC24].

2.1. Solid condensed recollections. — Let Cond(Sp) denote the oo-category of (light)
condensed spectra, that is, hypersheaves of spectra on the site of light profinite sets as defined
by Clausen and Scholze [CS24]. The evaluation at the point (—)(*): Cond(Sp) — Sp admits a
fully faithful symmetric monoidal left adjoint (—): Sp — Cond(Sp), sending a spectrum X to
the discrete condensed spectrum X.

One can develop a theory of solid condensed spectra along the lines of [CS24, Lectures 5-6].
Let Null := cofib(S[{oc}] — S[NU{oc}]) be the free condensed spectrum on a null sequence. Let
o: Null — Null be the endomorphism induced by the shift map (=) +1: NU {co} — N U {oo}.
Recall that a condensed spectrum M is called solid if

1 — o*: Homg(Null, M) = Homg(Null, M)

is an equivalence, where Homg denotes the internal Hom in Cond(Sp). We let Spg € Cond(Sp)
denote the full sub-co-category of solid condensed spectra. Then Sp, is closed under all
limits and colimits. This implies that the inclusion Sp, € Cond(Sp) admits a left adjoint
(—)": Cond(Sp) — Spg- It satisfies (M ® N)® ~ (M" ® N)®, which allows us to endow Sp,
with a symmetric monoidal structure, called the solid tensor product, via M @ N := (M ® N)".

2.2. Solid condensed spectra and p-completions. — If X is a p-complete spec-
trum, then X is usually not p-complete in Cond(Sp) because (—) doesn’t commute with
limits. After passing to p-completions, we still get an adjunction on p-complete objects
(=)p: Spy = Cond(Sp)p : (—)(*) and the left adjoint is still fully faithful because the unit is
still an equivalence.

It’s straightforward to check that any discrete condensed spectrum is solid. By closure under
limits it follows that (=) : Sp;, — Cond(Sp), takes values in Sp,. The solid tensor product
has the magical property that if M and N are p-complete and bounded below solid condensed
spectra, then M ®" N is again p-complete; see [CS24, Lecture 6] or [Bos23, Proposition A.3].
In particular, the fully faithful embedding (—)p: Sp, — Spa is symmetric monoidal when
restricted to bounded below objects.

§2.1. Definitions and basic properties

In this subsection we start setting up the theory in a completely analogous way to [Pst23,
§§2-3]. Let us fix the following notation: We let R be an Ej-algebra in the symmetric monoidal
oo-category of solid condensed spectra Spg and we let

— ®% —: RModg(Spe) X LModr(Spe) — Spa
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denote the relative tensor product over R. We also let Nullg = cofib(R[{oo}] — R[N U {c0}])
be the free solid condensed R-module on a null sequence as in 2.1. It can be shown that Nullg

agrees with [[S and defines a compact generator of Sp,, so that Nullg is a compact generator
of LModr(Spg)-

2.3. Solid perfect even modules. — We say that an R-module Q is solid perfect even if it
is contained in the smallest sub-co-category

Perfe,(R7a) € LModg(Spy)

which is closed under extensions and retracts and contains X*"R[S] for all n € Z and all light
condensed sets S. Since we work in the solid setting, R[S] is either a finite direct sum of copies
of R, or equivalent to Nullg, so it would be enough to include X?"Nully for all n € Z.

2.4. The solid even filtration. — Equip Perf.,(Ra) with a Grothendieck topology in which
covers are maps P — @ whose fibre is again solid perfect even. Every left R-module M defines
a Spg-valued sheaf on the additive site Perfe,(Ra) via

Homp(—, M): Perfey(Ra)® — Spy -

We can form its truncations 72, Homp(—, M) in the sheaf co-category Sh(Perfey(Ra), SPg)
and then define the solid even filtration of M as the sections

ﬁlgv /R M = FPerfeV(R.) (R, T>2% HOHIR(—7 M)) .

If R is clear from the context, we’ll often just write fil}, M. In particular, if we write fil}, R, it
is understood that we take the solid even filtration of R over itself.

For any half-integer weight w, we also define the even sheaf of weight w, denoted Fys(w), as
the sheafification of the presheaf of solid abelian groups ma,, Homp(—, M) : Perfe, (Ra)°? — Abag.
For w = 0 we just write Fps :== Far(0). We call M solid homologically even if Fpr(w) = 0 for
all proper half-integers w € % + Z.

The results from [Pst23, §2] can be carried over verbatim to the solid setting. In particular,
it’s still true that an R-module F, whose condensed homotopy groups 7. (FE) are concentrated
in even degrees, will be homogically even and its solid even filtration will be the double-speed
Whitehead filtration fil7, /p E' ~ 750, (E).

2.5. Remark. — Including all R[S] in the definition of solid perfect even will be crucial for
the theory to work. Without this, several arguments in §2.3 would break, which in turn would
break our proof of faithfully even flat descent.

Already when we’re working with perfect even modules P in Pstragowski’s sense, we're lead
to consider P[S] as well. This is because mo Hom (P, M) will now be a solid condensed abelian
group, so we must take its S-valued points for any light condensed set S into account, which
correspond to maps P[S] — M.

2.6. Monoidality of the solid even filtration. — The arguments from [Pst23, §3] can
mostly be adapted to the solid situation, but we need some enriched oo-category to do so.
Let us first set up the enriched setting. We use the formalism from [Hei23]. The oo-category
LModr(Spg) is naturally a module over Spg in Pr' and so it will be enriched in the sense of
[Hei23]. Explicitly, for left R-modules M and N, the mapping spectrum Homp (M, N) comes
with a natural condensed structure Homp (M, N) which will be solid if N is (we’ve already
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used this in 2.4). Restricting the module structure, we see that LModgr(Spyg) is also a module
over the connective part Spg »( in Pr", which yields an enrichment given by 7>0 Homp (M, N).
The full sub-oo-category Perfe, (Ra) € LModg(Spy) inherits an enrichment over Spg (. There
is an established notion of an enriched presheaf co-category PShSPa.>0 (Perf,, (Ry), SPa,>0) With
an enriched Yoneda embedding; see [Hin20; Hei25]. By considering enriched presheaves which
are additive and local with respect to all covering sieves, we can also define an enriched version
of additive sheaves. To avoid cumbersome notation, we’ll drop the superscript and just write
Shy, (Perfey (Ra), Spa o) and Shy(Perfey(Ra), Spe) in the following, implicitly assuming that
all sheaves are enriched over Spy -

Let us now explain how to adapt [Pst23, §3] to turn the solid even filtration into a lax
symmetric monoidal functor

fily, ,_(=): LMod(Sps) — LMod(Fil Spy) .

Let ¢4?° and U denote the cocartesian unstraightenings of the functors lax symmetric monoidal
functors R +— Shy(Perfe, (Ru), Spg »0) and Shy(Perfe,(Ra), Spg). The co-category of enriched
(pre)sheaves satisfies a similar universal property as usual; see [Hei23, Theorem 5.1]. As in
[Pst23, Construction 3.8], we obtain a symmetric monoidal natural transformation between
the lax symmetric monoidal functors R + Shy (Perfe,(Ra), Spa o) and R +— LModg(Spy)-
Applying unstraightening, we obtain a diagram

u=° a LMod(Sp)

~

Algg, (Spa)

where the vertical arrows are cocartesian fibrations and the top horizontal arrow F' is symmetric
monoidal.

The functor F' admits a fibre-wise right adjoint: In the fibre over R, the right adjoint is
given by the restricted enriched Yoneda embedding LModg(Spg) — Shy(Perfey(a), Spa >0)
sending M +— 750 Homp(—, M). Since our sheaves take values in Spy -, the truncation can be
performed section-wise and no sheafification is necessary. By [L-HA, Corollary 7.3.2.7], the fibre-
wise right adjoints assemble into a lax symmetric monoidal right adjoint G': LMod(Spg) — U=".
We'll now study the composition

LMod(Spg) 5 U?" — U

In the fibre over R, this composition is given by sending M — vgr(M) = 759 Homp(—, M),
where now the truncation is performed in Shy,(Perfe,(Rua), SpPa)-

Another application of the universal property [Hei23, Theorem 5.1] allows us to extend
the lax symmetric monoidal functor 7>_9, Homg(—,S): Z — Shy(Perfe,(Sa), Spg) to a lax
symmetric monoidal functor

Fil Spy — Shy (Perfey (Sa), Spa)

As in [Pst23, Construction 3.20], for any R € Algg, (Spy), Shy(Perfe, (Ra), Spy) is a module
over Shy(Perfey(Sa), Spe) and thus over Fil Sp,. Therefore, if X and Y are Spg-valued sheaves
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on Perfe, (Ra), we can define a filtered solid condensed mapping spectrum Hom*(X,Y’). Using
the enriched Yoneda lemma of [Hin20], we can argue as in [Pst23, Lemma 3.23] to show

Hom* (vr(R), vr(M)) ~ fily, ) M .

Now consider the functor R — Shy;(Perfe,(Ru), Spa). As in [Pst23, Construction 3.27] we can
refine it to a lax symmetric monoidal functor Algg, (Spg) — Algg, (Modry Sp_(PrL)).

We don’t expect that this functor factors through the image of the fully faithful embedding
Algg, (Fil Spy) — Algg, (Modrisp, (Prl)), as it does in the uncondensed setting.(>!) But this
fully faithful embedding has a right adjoint by [L-HA, Theorem 4.8.5.11], which sends a Fil Spg-
module M with a distinguished object X € M to End*(X) € Algg, (FilSp,). Composing with
this right adjoint allows us to turn R — fil}, /R R into a lax symmetric monoidal functor

fil7, ,_(=): Algg, (Spa) — Algg, (Fil Sp,)

ev /—

and provides a symmetric monoidal natural transformation from R +— Shy(Perfe,(Ra), Spg)
to R — Modg: I r(FilSpg). The unstraightening of the latter functor is the the pullback of

LMod(Fil Spg) — Algg, (FilSpy) along fil} ,_(—). We obtain a diagram

ev /—

U LMod(Fil Spy)

J fil?, (- J

) i
Algg, (Spa) Algg, (FilSpy)

with lax symmetric monoidal horizontal arrows. We can now finally define a functorial lax
symmetric monoidal solid even filtration as the composite

fil?, ,_(~): LMod(Sps) % U** — U — LMod(Fil Spy) .
2.7. Calculus of solid evenness. — Deviating from [Pst23, Definition 4.4], let us call a

left R-module M solid ind-perfect even if it can be written as a filtered colimit of solid perfect
evens, and solid even flat if m,(E ®Y, M) is concentrated in even degrees for any right R-module
E such that m(FE) is concentrated in even degrees. In the uncondensed setting these notions
are equivalent by the “even Lazard theorem” [Pst23, Theorem 4.14]. In the solid setting it is
still true that solid ind-perfect even modules are solid even flat (as we’ll see). However, we
don’t know if the converse is true. Similarly, we don’t know if [Pst23, Theorem 4.16] still works.
In §2.2, we’ll discuss what the problem is, and in §2.3 we’ll see how to fix this, at least under
certain additional assumptions.

Despite these problems, the formalism of 7, -even envelopes can entirely be carried over to
the solid setting: Any left R-module M admits a map M — FE such that:

(a) cofib(M — E) is solid ind-perfect even.

(b) m«(F) is concentrated in even degrees.

(2-D1n particular, we don’t expect that the analogue of [Pst23, Proposition 3.26] is true, i.e. that
Hom* (UR(R), —) : Shz (Perfev(R.), Sp.) — LMOdM*(VR(R)) (Fll Sp.)

is usually not an equivalence. The problem is that the even filtration fil}, ,z(M) only knows about the values of
Ty2+« Hompg(—, M) on R (plus even shifts, extensions, and retracts thereof), but not about the value on Nullg.
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(¢c) for any other map M — F into a left R-module F' such that m.(F) is even, a dashed
arrow can be found to make the following diagram commutative:

M

-

E- > F

The proof is the same as in the uncondensed setting, except that we have to consider maps
YX"™"Nullgp — M from odd suspensions of Nullpg.

2.8. Comparison with the uncondensed theory. — Let R be a discrete solid condensed
ring and let M be a discrete left R-module. Let filp_, M be Pstragowski’s perfect even filtation,
regarded as a filtered discrete solid spectrum. Since Pstragowski’s category Perfo,(R) is a full
sub-oo-category of Perfe,(Ra), we get a canonical comparison map fil ., M — fil5, M.

2.9. Theorem. — In the setting from 2.8, the comparison map from the perfect even filtration
to the solid even filtration is an equivalence

fill ., M — filX, M.

P-ev

Proof. The essential step is to show that modules which are homologically even in Pstragowski’s
sense (which from now on we’ll call discrete homologically even) are also solid homologically
even. This will be verified in Corollary 2.20.

Assuming this, we can establish the desired equivalence as follows: Since both sides are
exhaustive filtrations on M, it will be enough to check that we get an equivalence on associated
gradeds. First assume that M is homologically even. In this case both gry ., M and gry, M
can be computed by repeatedly taking m.-even envelopes, as explained in [Pst23, §5]. Now it’s
not clear from the definition whether a m.-even envelope of M as a discrete left R-module is
also a m-even envelope as a solid condensed left R-module. However, the specific construction
from the proof of [Pst23, Proposition 4.11] does have this property.(Q'Q) This settles the case
where M is homologically even.

Now let us show that gry . M — gry, M is an equivalence in general. Replacing M by
shifts, it will be enough to treat the case * = 0. Let F° denote the even sheaf in the discrete
case, so that

grp o, M ~ R (Perfey(R), Fyy) and  grd, M ~ RI'(Perfey(Ra), Far) -

We’ll show via induction that H"(Perfey (R), Fy;) — HY(Perfey(Ra), Fas) is an isomorphism for
all n. The case n < 0 is trivial. For the inductive step, assume we already know the claim
for some fixed n and all M. By [Pst23, Lemma 6.21], we find a map M — N into a discrete
homologically even left R-module such that Fy, — F3; is injective. We'll argue in Lemma 2.21
that N can be chosen in such a way that the map of solid even sheaves Fj; — Fp is injective as
well. Let us now denote C' := cofib(M — N). Since N is (both discrete and solid) homologically
even, we get exact sequences

0— Fyy — Fy — Fo — Fopyy — 0,
0 — Fuy — FNn — Fc — Fsm — 0.

(22 Implicitly, we use that discrete condensed abelian groups have vanishing higher cohomology on any light
profinite set; see [CS24, Lecture 4].
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We know that H*(Perfey(R), F°) — H*(Perfey(Ra),F—) is an isomorphism for N by the
homologically even case, and an isomorphism in cohomological degrees * < n for M, C' and
> M by the inductive hypothesis.

That H" ™! (Perfe, (R), Fy;) — H" " (Perfey(Ra), Far) is an isomorphism now follows from
a straightforward diagram chase: Let K° := coker(Fy, — Fy) and K = coker(Fyr — Fn), so
that we can split the above exact sequences into two short exact sequences each. Repeatedly
applying the four lemma to the resulting long exact cohomology sequences, we deduce that
H*(Perfe, (R), K°) — H*(Perfe,(Ra), K) is an isomorphism in cohomological degrees * < n,
that H""(Perfey (R), Fy;) — H"H (Perfey (Ra), Far) is injective (since M was arbitrary, this
shows injectivity for C and XM as well), that H*™!(Perfe, (R), K°) — H*""(Perfe, (Ra), K) is
injective, and finally that H"™!(Perfe, (R), Fy;) — H" 1 (Perfe, (Ra), Far) is an isomorphism.
This finishes the induction and the proof. O

§2.2. Recollections on trace-class morphisms and nuclear objects

In contrast to what we’ve seen so far, it’s not so clear how to transport Pstragowski’s discussion
of even flatness—in particular, the powerful results [Pst23, Theorems 4.14 and 4.16]—to the
solid setting. The main problem is the following: In the proofs, Pstragowski repeatedly uses
the trick that a map P — @ of perfect even R-modules can be equivalently described by a map
S — PY ®gr Q. This doesn’t work anymore in the solid setting, since most solid perfect even
R-modules are not dualisable, the quintessential example being Nullg.

The discrepancy between compact and dualisable objects is a frequent issue in condensed
mathematics. The usual way to deal with this issue is to replace dualisable objects by the
weaker notions of trace-class morphisms and nuclear objects that we’ll review in this subsection.

2.10. Trace-class morphisms. — Let C be a presentable symmetric monoidal®3) co-

category. Let R be an Ej-algebra in C. By Lurie’s adjoint functor theorem, for all left
R-modules M and N there exists an object Hom (M, N) € C characterised by

Home (—, Homp(M, N)) ~ Homp(M ® —, N).

We often use MV := Homp (M, R) to denote the dual of M. We remark that M is naturally a
right R-module.

A morphism ¢: M — N of left R-modules is called trace-class if there exists a morphism
n: l¢ = MY ®g N such that ¢ is the composition

M>~M®le-MOM @ N L R N ~ N.
We often call n the classifier of .

Trace-class morphism have a number of nice properties. We’ll often use the properties from
[CS22, Lemma 8.2] as well as the following lemma.

2.11. Lemma. — Let F': C — D be a symmetric monoidal functor between presentable
symmetric monoidal co-categories. Let R € Algg (C). By abuse of notation, we’ll denote both
Homp(—, R) and Hompg) (-, FI(R)) by (—)".

(a) There exists a natural transformation F((—)Y) = F(—)V.

(23 By convention, this includes the assumption that — ® — commutes with colimits in both variables, so the
adjoint functor theorem is applicable.
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(b) If M — N is a trace-class morphism in LModg(C), then NV — MY is trace-class in
RModg(C) and F(M) — F(N) is trace-class in LModp(gy(D).

(¢) The commutative square in RModp(g) (D) formed by the morphisms from (a) and (b)

F(NY) —— F(M)

>
-
-
-
-
-
-
-

F(N)! —— F(M)”

admits a canonical diagonal map F(N)¥ — F (M) that makes both triangles commute.

Proof. The natural transformation from (a) is adjoint to F'((—)") ®p(g) F'(—) = F(R), which
is in turn given by applying F to the evaluation (—)" ®gr (—) = R.

Now let M — N be trace-class in LModg(C) with classifier 1o — MY®pgrN. If we apply F' to
the classifier and compose with the morphism F (M) — F(M)Y from (a), we obtain a morphism
Ip — F(MY)®pr)F(N) — F(M)"®pg) F(IV), which serves as a classifier for F(M) — F(N).
If we compose instead with N — NV, we obtain 1¢ — MY ®r N — MY ®gr NV, which serves
as a classifier for NY — MY being trace-class. This shows (b). To show (c), we construct the
diagonal map F(N)¥ — F(MV) as follows:

F(N)" — F(MY ®r N)®p F(N)" ~ F(M") ®pry F(N)®p F(N)" — F(M").
Here we use the classifier 1¢ — MY ®g N and the evaluation map for F'(N). O

2.12. Nuclear objects — In addition to the assumptions from 2.10, let us now assume that
C is stable, compactly generated, and 1¢ is compact.

(a) A left R-module M is called nuclear if every morphism P — M from a compact left
R-module P is trace-class.

(b) We call a left R-module M basic nuclear if M can be written as a sequential colimit
M ~ colim(My — My — ---) such that each transition map M,, — M,y is trace-class.

We let Nuc(LModg(C)) € LModg(C) denote the full sub-oo-category spanned by the nuclear
left R-modules.

2.13. Theorem. — Let C be a presentable stable symmetric monoidal co-category such that
C is compactly generated and the tensor unit 1¢ € C is compact. Let R € Algg (C)

(a) Nuc(LModg(C)) € LModg(C) closed under shifts and colimits. Moreover, if M is a
nuclear left R-module and X € Nuc(C), then M ® X € Nuc(LModg(C)).

(b) Nuc(LModg(C)) is wi-compactly generated and the wi-compact objects are precisely the
basic nuclears.

(¢) If R— R'is amap of E1-algebras in C, then R'®gr —: LModg(C) — LModg/ (C) preserves
the full sub-co-categories of nuclear objects.

(d) Suppose that for all compact left R-modules P and all compact C' € C the tensor product
P ® C is still compact as a left R-module. If P is compact and M is nuclear, the natural
map

PY®r M — Homp(P, M)
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is an equivalence. Furthermore, if R — R’ is a map of Ei-algebras in C such that R is
nuclear as a left R-module, then the forgetful functor LModg (C) — LModg(C) preserves
the full sub-oco-categories of nuclear objects.

Proof sketch. For parts (a) and (b), the case R ~ 1¢ is covered in [CS22, Theorem 8.6]; the
arguments given therein apply verbatim for general R as well. For (¢), it’s straightforward to
check that R’ ® g — preserves trace-class maps, hence basic nuclear objects and thus all nuclear
objects by (b).

For (d), the assumption implies that every compact left R-module is also internally compact
in the sense that Homp (P, —) preserves filtered colimits. We may thus reduce to the case
where M is basic nuclear. Write M as a sequential colimit M ~ colim(My — M; — ---) with
trace-class transition maps. If n: 1¢ — Homp(M,, R) ®r Mp+1 is a classifier for M,, — M,
and ¢: Homp(P, M,,) ® Homp(M,, R) — Homp(P, R) is the canonical composition map, we
get a commutative diagram

Homp(P, My) Hom (P, Myy1)

d |

Hom (P, My,,) ® Homp(My, R) ®r My —— Homp(P, R) ®r My 41

Using these diagrams for all n we see that colim Homp(P, R) ® g M,, — colim Homp(P, M,,)
has an inverse. It follows that P¥ ®r M ~ Homp(P, M), as desired.

Now let M’ be a nuclear left R'-module and let P — M’ be a map from a compact left
R-module. Then R’ ®r P — M’ is trace-class, because it factors through R @ g P — R' ®g M’
and R’ ®p — preserves trace-class morphisms. If n: 1¢ — Homp (R' ®r P,R') ®r M’ is a
classifier, we note Homp/ (R’ ®gr P, R') ~ Homp(P, R') ~ P¥ ®pr R’ by our assumption that R’
is nuclear. Thus Homp, (R'®g P, R')®pr M’ ~ P¥®p M' and so 7 is also a classifier witnessing
P — M’ being trace-class. This shows that the forgetful functor LModg/(C) — LModg(C)
preserves the full sub-oco-categories of nuclear objects. O

2.14. Remark. — If Cj is a small stable symmetric monoidal co-category, then Theorem 2.13
can be applied to Ind(Cp). Since every trace-class map in Ind(Cp) factors through a compact
object by [CS22, Lemma 8.4], we see that the basic nuclear objects in Ind(Cy) are of the form
“colim”(X; — Xy — ---), where each X,, — X,,41 is trace-class in Cp.

If C is a presentable stable symmetric monoidal co-category (hence C is large unless C ~ 0),
one can still make sense of Nuc Ind(C) without running into set-theoretic problems. Indeed, if k
is a sufficiently large regular cardinal such that C is k-compactly generated and 1 is k-compact,
the same argument as in [CS22, Lemma 8.4] shows that every trace-class morphism in C factors
through a x-compact object. Then every basic nuclear object is equivalent to one in which each
X, is k-compact and so the basic nuclear objects in form an essentially small co-category. We
may then define NucInd(C) as Ind,, (—) of the co-category of basic nuclear objects.

§2.3. Solid even flatness in the nuclear case

In this subsection we explain that the analogues of [Pst23, Theorems 4.14 and 4.16] are still
true under certain additional nuclearity assumptions.

2.15. Assumptions on R. — From now on let us assume that our solid E;-algebra R
satisfies the following condition:
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(R) The dual Nully, is nuclear and solid ind-perfect even both as a left R-module and as a right
R-module.

Here we use that Nullg ~ HN S ®" R is naturally a bimodule over R. Also note that Assump-
tion (R) implies that that PV is nuclear and solid ind-perfect even for any solid perfect even
left or right R-module P.

2.16. Lemma. — Let R° be a discrete condensed E1-ring spectrum and let M° be any discrete
condensed left R°-module.

(a) Assumption 2.15(R) is satisfied for R = R°. Moreover, M° is nuclear as a left R°-module.

(b)  Assumption 2.15(R) is satisfied for R = (R°),. Moreover, if R° is connective, then (M°),
is nuclear over (R°)p.

(¢) Assumption 2.15(R) is satisfied for R = (R°),[1/p]. Moreover, if R° is connective, then
(M°)p[1/p] is nuclear over (R°),[1/p].

Proof. In the following, we won’t specify whether we're working with left or right R-modules,
since the arguments will be valid in either case. For arbitrary solid E;-algebras R, we have
Null}, ~ Homg(] [y S, R). If R = R° is discrete, then Homg([ ]y S, R) ~ @y R°, which is solid
ind-perfect even. Since R is nuclear over itself and nuclear objects are closed under shifts and
colimits, it follows that every discrete R-module is nuclear. This shows (a).

If R = (R°)p, then the same argument shows Homg([]y S, R) ~ (By R°)p. To show the
solid ind-perfect evenness condition, write

R°) =~ colim f(”)R,
<<—Ii? >p f: N1—>N, rN[p
f(n)—oo

where the colimit is taken over all functions f: N — N such that f(n) — oo as n — oco. We
claim that whenever g < f is growing so slowly that f(n) — g(n) — oo, the transition map
[y p/WR — [Inp? (") R is trace-class and factors through Nullg. This will show that every map
from a compact left R-module to (Py R°); is trace-class and factors through Nullg, so that
(@y R°)p is nuclear and solid ind-perfect even by the solid analogue of [Pst23, Proposition 4.3].

To show the claim, we may as well assume g = 0 and show that (pf™),en: [[y R — [Iy R
is trace-class and factors through Nullg. Let e, denote the n'® basis vector in the standard basis
of @y R°. Then Y pf ™ (e, ®ey,) is a well-defined mo-class in (P 70(R°))p ~o(R) [Ix0(R),
since the solid tensor product of connective p-complete objects will be p—comp/lete again. The
image of this mp-class in (Py R°)p Q% [y R defines a morphism

S — Null, &% [[ R,
N

which classifies a trace-class map Nullg — [[y R. By inspection, this is a factorisation of
(pf ™) pen: TIy R — Iy R, as desired.

This argument shows, in particular, that the p-completion of any countable direct sum of
copies of R° is nuclear over R. We deduce the same for arbitrary direct sums, as p-completion
commutes with wi-filtered colimits. Now suppose R° is connective. First consider the case where
M?® is bounded below. Let M be the p-completion of M°. Define a sequence of left R-modules
My, My, ... as follows: My = M; for n > 0, we choose a map @ X" R° — M, that is surjective
on 7, and then define M, 1 = cofib((P L"R° — M,,),. Then M ~ colim fib(M — M,,); note
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that the colimit doesn’t need to be p-completed, since each term is p-complete and in each
homotopical degree the colimit stabilises after finitely many steps. Thus, it will be enough to
check that each fib(M — M,,) is nuclear, which follows from our observation that p-completions
of arbitrary direct sums of copies of R° are nuclear. This shows that (M°), is nuclear in the
bounded below case. For general M°, note that (M°), and (7>_,M°), agree in homotopical
degrees > —n + 1. It follows that (M®), ~ colim,>o(7>—,M°),. By the bounded below case,
this is a (non-p-completed) colimit of nuclear objects and so (M°), must be nuclear too. This
finishes the proof of (b).

If R = (R°)p[1/p], then Homg([[xS, R) ~ (PBy R°)p[1/p] by compactness of [[S. The
desired assertions then follow from (b) using base change for nuclear modules (Theorem 2.13(c)).
This shows (c). O

2.17. Lemma. — Let R — R’ be a map of solid condensed Eq-rings such that R satisfies
Assumption 2.15(R) and R’ is nuclear as a left R-module. Then R’ satisfies 2.15(R) too.

Proof. We have Homp/ (Nullg/, R') ~ Homp(Nullg, R') ~ Nullj, ®%, R’ by base change and
Theorem 2.13(d). Since being nuclear and solid ind-perfect even is preserved under base change,
the claim follows. O

Under Assumption 2.15(R), we can show the following weaker analogue of the “even Lazard
theorem” [Pst23, Theorem 4.14].

2.18. Lemma. — Let R be a solid condensed E1-ring spectrum and let M be a left R-module.
(a) If M is solid ind-perfect even, then M is solid even flat.

(b) Let M be solid even flat. If R satisfies Assumption 2.15(R) and M is nuclear, then M s
solid ind-perfect even.

Proof. For (a), we only need to check that Nullp is solid even flat. This follows from the fact
that Nullz ~ [[y Z is flat for the solid tensor product on Abg by [CS24, Lecture 6].

For (b), let ¢: P — M be a map from a compact left R-module. By the solid analogue of
[Pst23, Proposition 4.3], it will be enough to show that ¢ factors through a solid perfect even.
Since M is nuclear, ¢ will be trace-class, with classifier n: S — P¥ ®% M. As in the proof of
[Pst23, Theorem 4.14], let us choose a map P¥ — E whose suspension is a m.-even envelope in
right R-modules. Then 7 (FE ®% M) is concentrated in odd degrees, hence the composite

S— P'QE M — EQR M

must vanish.(24) Tt follows that the classifier n lifts to a map n': S — X~1C ®% M, where
C ~ cofib(Homp(P,R) — E). By definition of ms-even envelopes, ©~1C is solid ind-perfect
even as a right R-module. Writing ©¥~'C as a filtered colimit of solid perfect evens and using
that S is compact, we obtain a further factorisation

s Lo M

S|

PY % M

(29 This argument still works with condensed homotopy groups since any cover of the one-point set # in the
site of light profinite sets is split. In the proof of Lemma 2.19 below we have to be more careful.
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where @ is solid perfect even. Assumption 2.15(R) guarantees that PV is nuclear, hence the
composition QQ — X ~1C — PV is trace-class as a map of right R-modules. Choose a classifier
¥: S — PY®Y, QY. We see that the original map ¢: P — M is given by tensoring P with 7"
and ¥ and then applying the evaluation maps evg: Q¥ ®" @ — R and evp: PQ" P¥ — R.
This can be done in any order, hence ¢ also agrees with the composition

PP P QY YR L Qv et et M S, 0.
We conclude that ¢ factors through Q. Again by Assumption 2.15(R), Q" is a filtered colimit

of solid perfect even left R-modules. Since P is compact, we conclude that ¢: P — M factors
through a solid perfect even left R-module, as desired. O

We can also show the following weaker analogue of [Pst23, Theorem 4.16].
2.19. Lemma. — Let R be a solid condensed E1-ring spectrum and let M be a left R-module.

(a) M is solid homologically even if and only if for every map P[S| — XM, where P is solid
perfect even and S is a light profinite set, there exists a map P — 3Q with Q solid perfect
even and a cover S" — S such that the composition P[S'] — P[S] — M factors through
P[S] — 2Q[S']. In the case S = *, we can always choose S" = * as well.

(b)  Suppose M is solid homologically even. If E is a solid even flat right R-module such that
74 (E) is even, then m.(E Q% M) is even.

(¢) Suppose R satisfies Assumption 2.15(R) and M is nuclear. Suppose furthermore that for
any solid ind-perfect even right R-module E such that w4(E) is even, m+(E Q% M) is even
as well. Then M is solid homologically even. In particular, this applies if M is nuclear
and solid even flat.

Proof. Part (a) is an unravelling of what it means for the sheafification of P +— m Homp(P, M)
to be trivial, similar to the proof of [Pst23, Theorem 4.16(2)]. The additional assertion about
S = = follows again from the fact that any cover of = splits.

For (b), let n: S[S] — E ®%}, XM be any map, where S is a light profinite set. Let M — F
be a my-even envelope and let C' := cofib(M — F). Since E is solid even flat, 7(E Q@ XF) is
concentrated in odd degrees. Thus, there exists a cover S’ — S such that the composite

S[Sl] — S[S] — FE @7% YM — F @7% XF

vanishes. Choosing a null-homotopy, we see that S[S'] — E ®%, XM factors through a map
n': S[S'] — E®% C. By assumption, C is solid ind-perfect even. Since S[S'] is compact, 7’
factors through another map n”: S[S’] — E ®Y, P, where P is solid perfect even. Since M
is solid homologically even, (a) shows that the composite P — C' — XM factors through
¥Q, where @ is solid perfect even. Now @ is solid even flat by Lemma 2.18(a) and so
7« (E ®F XQ) is concentrated in odd degrees. Thus there must be a cover S” — S’ such that
S[S"] — S[8'] — E®Y, XQ vanishes. Composing with ¥ — XM, we find a cover S” — S such
that the composition of our original map 7: S[S] — E @% XM with S” — S vanishes. This
proves that 71 (F ®%, XM ) = 0. Replacing E by an even shift, we deduce that 7.(F @ XM) is
even, as desired.

Let us now show (c) by verifying the criterion from (a). Let P[S] — XM be any map where
P is solid perfect even and S is a light profinite set. By adjunction and the assumption that M
is nuclear, we obtain a map

n: S[S] — Homp(P,XM) ~ P¥ Q% XM .
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Choose a my-even envelope P¥Y — FE in right R-modules. By Assumption 2.15(R), P" is solid
ind-perfect even, hence the same is true for any m.-even envelope. Our assumption on M
then implies that 7, (E ®%, M) is even, so we find a cover S — S such that the composition
S[S’] — S[S] — PY ®}, EM — E ®%, ¥M vanishes. Choosing any nullhomotopy, we obtain
a map 7': S[S'] — X71C @% M, where C := cofib(P¥ — E). By assumption, C is solid
ind-perfect even; since S[S’] is compact, we find a solid perfect even right R-module @ and a
commutative diagram

s[s'] 1 2lQ et M

e

PY &% S M

By Assumption 2.15(R), the dual PV is nuclear as a right R-module and so the composition
»71Q — X71C — PV is trace-class. Arguing as in the proof of Lemma 2.18(b), we find that
P[S"] — P[S] — XM factors through (371Q)v[S’]. By Assumption 2.15(R) again, Q" is solid
ind-perfect even. Writing (X71Q)" as a filtered colimit of suspensions of solid perfect even
left R-modules and using that P[S’] is compact, we deduce that P[S’] — XM factors through
YQ'[S] for some solid perfect even left R-module @', as desired.

For the “in particular”, just observe that M being solid even flat implies that 7, (E ®% ¥M)
is concentrated in odd degrees and so indeed any map S — E ®', XM vanishes. O

Finally, we can provide the missing steps in our proof that the solid even filtration recovers
Pstragowski’s perfect even filtration in the discrete case

2.20. Corollary. — Let R be a discrete condensed E1-ring spectrum and let M be a discrete
condensed left R-module. If M is homologically even in Pstrggowski’s sense, then M is also
solid homologically even.

Proof. We'll verify the criterion from Lemma 2.19(a). Let ¢: P[S] — ¥ M be any map, where
P is solid perfect even. Since M is nuclear by Lemma 2.16(a), this map must be classified by
a map 7: S[S] — P¥ ®% XM. Now PV is solid ind-perfect even. In fact, it is discrete and a
filtered colimit of discrete left R-modules which are perfect even in Pstragowski’s sense (which
we’ll call discrete perfect even in the following). Indeed, this is clearly true for Nullé ~ @y R
and then it follows in general.

Since S[S] is compact, n must factor through a map n°: S[S| — P° ®% XM, where P° is
discrete perfect even. Then P° is dualisable and so 1° corresponds to an S-valued point of
mo Homp((P°)¥,XM). Since this is a discrete condensed abelian group, any S-valued point
comes from an S°-valued point for some finite set S°. Since (P°)Y is still discrete perfect even,
the assumption that M is discrete homologically even ensures that there exists a map P° — X Q°
with Q° discrete perfect even such that (P°)Y[S°] — XM factors through (P°)¥[S°] — L£Q°[S°].
Then our original map ¢: P[S] — M factors through P[S] — £Q°[S] and so we're done. [J

2.21. Lemma. — Let R be a discrete condensed Eq-ring spectrum and let M be a discrete
condensed left R-module. Then there exists a map M — N into a discrete and homologically
even left R-module N such that both the induced map Fy; — Fr; on Pstrggowski’s even sheaves
and the induced map Fpyr — Fn on the even sheaves from 2.4 are injective.

Proof. We adapt the proof of [Pst23, Lemma 6.21]. For any pair of a solid perfect even
P and a light condensed set S consider any S-valued point of Fxp(P), i.e. any morphism
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Z[S] — Fam(P). Up to replacing P by an even cover P’ — P, we may assume that this comes
from a morphism Z[S] — mo Hom(P, X M), and up to replacing S by a cover S’ — S, we may
assume that this comes from a morphism 7: S[S| — Hompz(P, M) ~ P¥ Q% XM, where we use
Theorem 2.13(d) and Lemma 2.16(a). Arguing as in the proof of Corollary 2.20 above, we see
that n factors through a map of the form 1°: S[S°] — P° ®% XM, where P° is discrete perfect
even and S° is a finite set.

Define @ to be the direct sum of all such (P°)¥[S°], then the map @ — XM induces
surjections .7:5 — Fyoy and Fg — Fuu by construction. Furthermore, ) is discrete, ind-
perfect even, and thus homologically even. If we now define N := cofib(X~1Q — M), then the
long exact sequences of even sheaves show that N is homologically even and both F3, — F3
and Fjy; — Fy are injective, as desired. ]

§2.4. Solid faithfully flat descent in the nuclear case

In this subsection we’ll show a flat descent result for the solid even filtration. We start with
the definition of faithful flatness; it is slightly more restrictive than [Pst23, Definition 6.15],
but we expect that this doesn’t cause any problems in practice.

2.22. Definition. — A map R — S of solid condensed Eq-algebras is called solid faithfully
even flat if S and cofib(R — S) are solid even flat both as left and as right R-modules.

2.23. Theorem. — Let R — S be a solid faithfully even flat map of solid condensed Eq-
algebras such that R satisfies Assumption 2.15(R) and S is nuclear as a left R-module. We
denote the Cech nerve of R — S by R — S*. Then for every nuclear solid homologically even
left R-module M, the canonical map

63, M — i il (5% @ M)

s an equivalence up to completing the filtrations on either side.

Proof. Put C = cofib(R — S) for short. First observe that S ®%}, M and C @Y, M are again
nuclear by Theorem 2.13(c) and (d). If F is any m.-even and solid even flat right R-module,
then F ®7?(S is m4-even and solid even flat since S is solid even flat both as as a left and as a right
R-module. Using that M is solid homologically even, we find that any map S — FQ% SQ% XM
vanishes by Lemma 2.19(b). Since S ®%, M is nuclear, we conclude that it must be solid
homologically even by Lemma 2.19(c). The same argument applies to C @Y M.

Therefore we get a short exact sequence 0 — Fasr — F. semm — Foerm — 0. Arguing as in
the proof of [Pst23, Theorem 6.26], we conclude that the Moore complex

0 — Fu — Fsgmm — Fsgmsetym — -

is exact. Replacing M by an even suspension, we deduce the same for F(_) (w) for every integral
weight w € Z. For proper half-integral weights w € % + Z this is true as well for trivial reasons,
since our argument above shows that all terms in S® ®%, M are homologically even. We can
thus apply the solid analogue of [Pst23, Proposition 5.5]. O

We also need the following variant of faithfully flat descent.
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2.24. Theorem. — Let Ry be a solid condensed E.-algebra and let Sy be an Eq-algebra
in Ro-modules such that Ry — Sy is solid faithfully even flat and Sy is nuclear over Ry. We
denote the Cech nerve of Ry — Sy by Ry — So- Let Ry — R be another map of solid condensed
E1-algebras such that R satisfies Assumption 2.15(R). Then for every solid homologically flat
Ro-module My, the canonical map

65, /(R %, M) — I filf, (R &%, Mo &, S3)

s an equivalence up to completing the filtrations on both sides.

Proof. This doesn’t follow from Theorem 2.23 since we can’t produce an E;-structure on
R ®7%0 Sp. But the argument can be adapted in a straightforward way.

Let Cy := cofib(Ry — Sp). A combination of Theorem 2.13(c) and (d) shows again that
R ®7%0 My ®?%0 Sy and R®7{0 My ®7%0 Cy are nuclear over R. Moreover, both are solid even flat
as left R-modules, hence solid homologically even by Lemma 2.19(c). It follows that

0 — Frow My — FreS Mo@% So — FRef, M@ Co — 0

is a short exact sequence. Since the cosimplicial Ro-module M ®7%O So ®7%0 S is split, we can
still use an analogous argument as in the proof of [Pst23, Theorem 6.26] to conclude that the
Moore complex

0 — Frem My — FRef, Mo@%, S0 — TR Mol So@f% So

is exact. The same follows for f(_)(w) for every half-integral weight w: If w € Z, replace My by
an even suspension, otherwise exactness holds for trivial reasons as the whole complex vanishes
by solid homological evenness. We can thus apply the solid analogue of [Pst23, Proposition 5.5]
again to finish the proof. O

2.25. Remark. — Note that M = R satisfies the nuclearity and homological evenness assump-
tion in Theorem 2.23. Similarly, My = R satisfies the assumptions in Theorem 2.24. So in either
case we get a way of computing fil} /R R via descent, provided R satisfies Assumption 2.15(R).

24


https://arxiv.org/pdf/2304.04685.pdf#theorem.6.26
https://arxiv.org/pdf/2304.04685.pdf#theorem.5.5

§3. THE SOLID EVEN FILTRATION FOR THH

§3. The solid even filtration for THH

The purpose of this section is to construct and study an appropriate even filtration on
TC™ (kug/kua), where kuy and kup denote certain lifts to ku of rings A and R (subject
to strong additional assumptions to be specified below). In the subsequent section §4 we’ll show
that the associated graded of this even filtration is closely related to the ¢-de Rham complex
q-dRR/a-

Throughout §3 and §§4.1-4.3, we fix a prime p as well as rings A and R satisfying the
following assumptions:

3.1. Assumptions on A. — We let A be a p-complete and p-completely perfectly covered
0-ring. That is, the Frobenius ¢: A — A is p-completely faithfully flat; equivalently, A admits
a p-completely faithfully flat d-ring map A — A into a perfect d-ring. We assume that A is
equipped with the following additional structure:

(*“») A has a lift to a p-complete connective Bog-ring spectrum Sy such that Sy ®s, Zp ~ A
and such that the Tate-valued Frobenius

tC
Cthp: Sp— SAP

agrees with the 6-ring Frobenius ¢: A — A on mg. Furthermore, ¢ic, must be equipped
with an S*-equivariant structure as a map of Eoo-ring spectra, where S receives the trivial
St-action and Si‘c” the induced S' ~ S'/C)-action.

The S'-equivariant structure in (*“») ensures that S4 is a p-cyclotomic base: By the universal

property of THH, the augmentation THH(S4) — S4 becomes a map of E-algebras in
cyclotomic spectra in a unique way, where the p-cyclotomic Frobenius on Sy is ¢, with its
chosen S'-equivariant structure. In particular, THH(—/S4) ~ THH(—) ®runus,) Sa carries a
p-cyclotomic structure. We also put kuy = (ku®S4)p.

3.2. Assumptions on R. — We let R be a p-complete A-algebra of bounded p>-torsion.
We assume that R is p-quasi-lci over A in the sense that the cotangent complex Lg 4 has
p-complete Tor-amplitude in homological degrees [0, 1] over R. In addition, one of the following
two conditions must be satisfied:

(E2) R has a lift to a p-complete connective Ez-algebra Sp € Algg,(Mods, (Sp)) such that
Sgr s, Zy, ~ R.
(E1) R is p-torsion free and has a p-quasi-syntomic cover R — Roo such that:

(a) Roo/p is relatively semiperfect over A in the sense that its relative Frobenius over
the 6-ring A is a surjection Roo/p ®a,6 A - Roo/D-

(b) If RS, denotes the p-completed Cech nerve of R — Roo, then the augmented cosim-
plicial diagram R — R3, has a lift to an augmented cosimplicial diagram Sgr — Sge_
in Algg, (Mods , (Sp)), which is p-complete and connective in every degree.

We put kug := (ku® Sg)p and, in case (E1), kugs_ = (ku® Sgs_)p.

3.3. Remark. — Even though the assumptions in 3.1 and 3.2 seem quite restrictive, they
allow for many interesting examples, as we’ll see in §6.1.

3.4. Remark. — Let us motivate the rather artificial condition 3.2(E;). If our lifts are
only Eq, there’s no even filtration on TC~ (kug/kua),. However, if TC™ (kugr/kua), happens
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to be an even spectrum, then we can still consider its double-speed Whitehead filtration
752, TC™ (kug/kuy)p,. This case turns out to be quite interesting: As we’ll see in §4.3, the
g-deformation of the Hodge filtration that we get in this case is independent of the choice of
the Eq-lift Sp! This is the reason why we don’t content ourselves with the Eo-case.

More generally, given a resolution Sg — Sgs_ as in 3.2(E;), then TC™ (kugs_/kuy), is
even in every cosimplicial degree, so we can use it to define an ad-hoc replacement of the
even filtration. Indeed, evenness can be checked modulo 3, so we only need to check that
HC~(R%,/A), is even. By assumption, Ry /p is relatively semiperfect over A, hence the same
is true for RS, /p in every cosimplicial degree. Then the desired evenness follows from [Wag25,
Lemma 4.18(a)] and [BMS19, Theorem 1.17].

3.5. Remark. — Throughout §3, we won’t use that the lifts kuy and kugr come from
spherical lifts S4 and Sg, nor will we use the structure of a p-cyclotomic base on S4. But for
the comparison with ¢-de Rham cohomology in §4, these assumptions will become relevant.

§3.1. Solid THH

Throughout §§3-4, we’ll work in the world of solid condensed spectra (see 2.1). In many cases,
it makes no difference whether we work solidly or p-completely; for the most part, the reader
not familiar with the solid theory may safely replace each “@” by a p-completion. But working
solidly has the advantage that that THH will often automatically be p-complete (Lemma 3.7).
This simplifies the p-completed descent for the even filtration (Lemma 3.12) and it makes it
much easier to deal with rationalisations, as not having to p-complete allows us to appeal
directly to the fact that ku, ® Q ~ Q,[3].

3.6. Convention. — For readability we’ll adopt the following abusive convention: If X is a
p-complete spectrum, we’ll identify X with the solid condensed spectrum X7, otherwise we
identify X with the discrete solid condensed spectrum X. In particular, we’ll regard ku as a
discrete condensed spectrum, but kug and kuy as a p-complete ones.

For any E-algebra k in Spg, the module co-category Mody(Spg) is symmetric monoidal
for the solid tensor product — ®} —. We can then consider topological Hochschild homology
inside Mody(Spg). This yields a functor

THHa(—/k): Algg, (Mody(Spa)) — Modx(Spa)®® .

We also let TCq (—/k) := THHg(—/k)"S" and TPa(—/k) := THHa(—/k)S", where the fixed
points and Tate construction are taken inside Mody,(Spg)®® "

3.7. Lemma. — Let k° be a discrete connective Eo-ring spectrum and let T° be a discrete
connective Ei-algebra in k°-modules. Let k = (k°), and T = (T°),. Then solid condensed
spectrum THHg(T'/k) is the p-completion of the discrete spectrum THH(T®/k®).

Proof. By the magical property of the solid tensor product,
THHe(T/k) ~T ®;OP®ET T

is again p-complete. Hence we get a map THH(T°/k°), — THHg(T/k). Whether this map is an
equivalence can be checked modulo p°. By Burklund’s result [Bur22, Theorem 1.2], the quotient
k/p® ~ k ®"S/p° admits an Eo-k-algebra structure, and so we may regard T/p° ~ T Q% k/p°

26


https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.4.18
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#Item.43
https://arxiv.org/pdf/1802.03261#theorem.1.17
https://arxiv.org/pdf/2203.14787.pdf#nul.1.2

§3.2. THE SOLID EVEN FILTRATION VIA EVEN RESOLUTIONS

as an Ej-algebra in the E;j-monoidal co-category RMody, 5 (Spa). Since k/p® ~ k°®S/p° and
T/p® ~T°®S/p® are discrete and the inclusion of discrete objects into all solid condensed
spectra preserves tensor products, we obtain

THH(T"/K)3 /0" = (0)0°) &Frppwgs () (T/0°) ~ THHA(T/R)" . OO

§3.2. The solid even filtration via even resolutions

Let us now construct the desired even filtrations. We’ll use the adaptation of Pstragowski’s
perfect even filtration to the solid setting that we’ve sketched in §2.

Throughout this subsection, we’ll fix a connective even E.,-ring spectrum k such that
mox (k) is p-torsion free. The example of interest is of course k = ku, but we’ll later apply the
same results in other cases as well (e.g. for ku ® Q or the geometric fixed points ku(I)Cm), SO
the additional generality will be worthwhile. We put k4 := k ®™ Sa, kr = kK ®" Sg, and in
case 3.2(IE1) also kpe =k @" Sgs_, where we regard k, S, and Sy as solid condensed spectra
per Convention 3.6. Note that these are all even by our assumptions on k, A, and R, but they
are not necessarily p-complete; in the case k = ku however, p-completeness is satisfied.

3.8. Even filtrations. — If we are in situation 3.2(E;), then THHg(kr/k4) is an E;-algebra
and so we can define
fily, THHa(kr/kA)

to be its solid even filtration as a module over itself. For k = ku, we’ll see in Corollary 3.24
below that fil5, THHg(kugr/kuy) is the p-completion of Pstragowski’s perfect even filtration
on the discrete E;-ring spectrum THH(kug/kuy). For k = Z, we’ll see in Corollary 3.21, that
fil}, HHa(R/A) agrees with the Hahn—Raksit-Wilson/HKR filtration on HH(R/A),.

In situation 3.2(E;), THHa(kr/ka) doesn’t have any multiplicative structure; instead, we
use the following ad-hoc definition as discussed in Remark 3.4:

ﬁlgv THH.(]{ZR/]CA) = 1%7’;2* THH.(]{ZR;O/]CA) .

To define filtrations on TCy (kr/ka) and TPa(kr/k4) in either situation, we use a construction
due to Pstragowski and Raksit that will appear in forthcoming work [PR] and has already been
used in [AR24]. Let Sey := fil}, S and T, := fil}, S[S'] denote the even filtrations of S and S[S'],
respectively.®1) Following [AR24, Definition 2.11], we define the co-category of synthetic solid
condensed spectra to be SynSpg := Mods,, (FilSpg). Then Te, is a bicommutative bialgebra
in SynSp, and we can equip Modr,, (SynSp,) with the symmetric monoidal structure coming
from the coalgebra structure on Te,. By monoidality of the even filtration, fil}, THHg(kg/kA)
is an object in Modr,, (SynSp,) (in case 3.2(Ey) it is even an E;-algebra). We can then finally
define the desired filtrations as

A%

R1%, ;o1 TPu(kp/ka) = (A1, THHg(kr/ka))" ",

ev,t

B1%, 1 TCa (hie/ka) = (61}, THHa(kp/ka))""

(3-D1t doesn’t matter whether they are defined in a la Hahn—Raksit—Wilson or a la Pstragowski or in the solid
setting. Indeed, by [Pst23, Theorem 7.5], the Hahn—Raksit—Wilson filtration is the completion of Pstragowski’s
filtration in either case (to apply this result, we use that S[S'] — S and S — MU are eff by [AR24, Corollary 2.36]
and [HRW22, Proposition 2.2.20]). But the filtrations are also exhaustive: For Pstragowski’s, this is always the
case, for the Hahn—Raksit—Wilson filtration of connective E-rings it is an unpublished result of Burklund and
Krause. Finally, the comparison with the solid version is Theorem 2.9.
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where the fixed points and Tate constructions (—)"Tev and (—)!Tev with respect to Te, are
defined as in [AR24, §2.3].(3~2)

In situation 3.2(E;), the ad-hoc even filtration being given as a cosimplicial limit gives us
good control over it. We’ll now show a similar description in situation 3.2(Es).

3.9. Even resolutions. — Assume we're in situation 3.2(Ez). Let P = Z[z; | i € I] be
a polynomial ring with a surjection P — R. Since Sp = S[z; | ¢ € I] is the free E;-ring on
commuting generators x;, we get an [E;-map Sp — kg. It is a folklore result that Sp admits an
even cell decomposition as an Eo-ring; see Lemma B.1 for a proof. Since kg is even, the map
Sp — kg can be upgraded to an Es-map.

Now let Z — P* denote the Cech nerve of Z — P and define S — Spe similarly. We
also let Z, — ﬁ]; and S, — Sp, denote the p-completed Cech nerves. The Cech nerve of
the augmentation THHg(Sp,) — Sp, is the cosimplicial diagram THHg(Sp, /S 131;). If we base
change this diagram along the E;-map THHg(Sp,) — THHa(kr/ka), we get an augmented
cosimplicial diagram of left THHg(kgr/k4)-modules

THHa(kgr/ka) — THHa(kp/ka @" Sﬁp-) )

In the case k = Z, this becomes the descent diagram HHg(R/A) — HHa(R/A 7, ]3p')

3.10. Remark. — Instead of the resolution from 3.9, we could also use the following: Let
Sp,_ = S[xil/p | i € I], let Sp — Sps_be the Cech nerve of Sp — Sp_ and define

kR;o = (k‘R ®§P Spooo); .

In this way we get resolutions of the same form in both cases 3.2(E;) and (Eg). Most arguments
below would work for this resolution as well, but the one from 3.9 is more convenient for
Corollary 3.24 and for the global case in §4.4.

3.11. Proposition. — Assume we are in situation 3.2(Es). Then the cosimplicial resolution
from 3.9 induces a canonical equivalence

fily, THHa(kg/ka) — lim 72, THHa (kr/ka ®" Sps) .

To prove Proposition 3.11, we’ll send two technical lemmas in advance.

3.12. Lemma. — The augmentation maps THHa(Sp) — Sp and THH(Sp,) — Sp, are solid
faithfully even flat in the sense of Definition 2.22. Moreover, Sp is nuclear as a THHg(Sp)-
module and Sp, is nuclear as a THHa(Sp,)-module.

Proof. The nuclearity assumptions follow from Lemma 2.16. We only show solid faithful even
flatness for THHa(Sp,) — Sp,; the argument for THHg(Sp) — Sp is similar (but easier). Let
E be a my-even module over THHg(Sp,). We have a convergent spectral sequence

E? = H, (7 (E) @ trna(ss,) ™(57,)) = 7o (B @ung(sr,) S7 ) -

32To avoid confusion with the genuine fixed points that will appear later, we deviate from the notation in
[AR24] and write (—)" v instead of (—)Tev.
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To show that the right-hand side is even, so that Sp, will be solid even flat as a THHg(S ﬁp)—
module, it will be enough to show that the E2-page is concentrated in even bidegrees. The
calculation in the proof of [HRW22, Proposition 4.2.4] shows that

is a graded p-completed exterior algebra over 74 (Sp,) on generators dw; in bidegree (1,0). Since
7« (F) is concentrated in even degrees, each dz; must act by 0, and so

T (E) ®7I?:THH.(Sﬁp) Tx(SB,) ~ mx(E) ®IZ; F%p(azxi liel),,

where FEP(OQCCZ' | i € I), denotes a p-completed divided power algebra on generators in

bidegree (2,0). Thus, to show that the E2-page is concentrated in even bidegrees, we only
need to check that any p-completed direct sum (D Z,), is solid even flat over Z,. For finite
direct sums this is obvious, for countable direct sums we can use the argument from the proof
of Lemma 2.16, and for uncountable direct sums we can reduce to the countable case since
p-completion commutes with wi-filtered colimits. This finishes the proof of evenness of the
E2-page, so that S P, is indeed solid even flat over THHu(Sp,).

Since the unit component Z, — L' (0%z; | i € I), is a direct summand, we see that the
condensed homotopy groups

7+ (E @%tias(or, ) cofib(THHa(Sp,) — S7,))

are also computed by a spectral sequence with E2-page concentrated in even bidegrees. This
shows that cofib(THHg(Sp,) — Sp,) is also solid even flat over THHg(Sp,) and we're done. [J

3.13. Lemma. — There exists a natural convergent spectral sequence
E; , = H, (HHa(R/A) ®3® m25(k)) = m,1s THHu(kr/ka) -

Proof. The argument is the same as in [HRW22, Proposition 4.2.4] except for different grading
conventions. Consider the filtered spectrum THHg(7>4(kRr)/7>+(k4)). This is an exhaustive
and complete (due to increasing connectivity) filtration on THHg(kr/k4) and so it determines
a convergent spectral sequence.

It remains to check that the E?-page has the desired form. The associated graded
of the filtered spectrum above is THHg(X*7my(kg)/X*m4(ka)). Since my(ka) and 7my(kr)
are concentrated in even graded degrees and Z-linear, the shearing functor ¥* is symmet-
ric monoidal and commutes with THH. The associated graded can thus be rewritten as
Y* HHa(74 (kR) /7 (ka)) ~ X* HHg(R/A) ®5® 7, (k). This yields the desired E2-page. O

Proof of Proposition 3.11. Using the spectral sequence from Lemma 3.13 (applied to S 4 @" Sﬁ;

instead of S4) and our asssumption that A ®7 ﬁp — R is p-quasi-lci and surjective, we see that
THHa(kr/ka ®"Sps) is even. It follows by the solid analogue of [Pst23, Lemma 2.36] that the
solid even filtration (taken in left modules over THHg(kr/k4)) is the double speed Whitehead
filtration
fil}, THHa(kr/ka ®" SPs) ~ =2, THHa(kr/ka ®" Sps) .
Now THHg(kr/ka) ~ THHa(Sr/Sa) ®" k satisfies Assumption 2.15(R) by Lemmas 2.16(b)
and 2.17. Using the flat descent result from Theorem 2.24, which applies thanks to Lemma 3.12,
we find that
filX, THHg(kg/ka) — liin7>2* THHg (kr/ka ®" Sps)

vV
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becomes an equivalence upon completion of the filtrations. Since the left-hand side is exhaustive
whereas the right-hand side is complete, to finish the proof of the THH case, it will be enough
to check that the right-hand side is also exhaustive.

In other words, we must show THHu(kr/ka) ~ lima THHa(kr/ka ®" Sps). By the same
argument as in [BMS19, Corollary 3.4(2)], it’s enough to show instead

THHa (kp/ka) @ T<osk liin(THH. (kr/ka @" Sp2) & ngsk)

for all s > 0. This can be checked on associated gradeds in s. So we must show that
HHa(R/A) ®F mas(k) ~ lima (HHa(R/A &7 13];) ®7 mas(k)) for all s > 0. By our assumptions
on R and A, the HKR filtrations filfjxr HHa(R/A) and filijxg HHa(R/A ®Y ]3p’ ) increase in
connectivity as x — co. They are therefore still complete after — ®Y mas(k). So we may also
pass to the associated graded of the HKR filtration. It remains to show that

J\ Lija @5 mas (k) — lim (/\ Lr/ag,pe ®7" Wzs(’f))

is an equivalence for all n,s > 0 (here the cotangent complexes are implicitly p-completed). By
descent for the cotangent complex, this would be true without — ®IZ' mos(k) on either side, so
we must check that — @™ mas(k) commutes with the cosimplicial limit. Since R is p-quasi-lci
over A and P — R is surjective, each \" Ly /A®,pe 18 concentrated in homological degree n.
Writing A" L) ag, pi =~ X" L, it follows that the cosimplicial limit lima A" Lg/ag,pe is given
by the unnormalised Moore complex L, ~ (--- « Ly « Lg), sitting in homological degrees
(—o0,n]. Now since mos(k) is p-torsion free and discrete by our assumptions on k, we see that
L; ®IZ' Tos(k) ~ L; ®Y) mos(k) is static. It follows that

ettt (- (a8 ) - ().

So in this case it is indeed true that — @™ mo,(k) commutes with the cosimplicial limit. This
finishes the proof. O

3.14. Corollary. — In both situations 3.2(E,) and 3.2(Es), fily, THHa(kr/ka) is an exhaus-
tive complete filtration on THHg(kr/ka).

Proof. In case 3.2(E;) completeness is clear and exhaustiveness follows from the same argument
as in the proof of Proposition 3.11 above. In case 3.2(Ey) exhaustiveness is automatic and
completeness follows from Proposition 3.11. O

A

3.15. Corollary. — Put (7<ask)a = (Sa ® T<ask)p and (7<ask)r = (Sr ® T<ask)p for all
s 2 0. In both situations 3.2(E1) and 3.2(Ey), consider the bifiltered object given by

fil* fil}, THHa(kg/ka) = fil}, THHa((7<2:k) r/(T<25k) ) -

(a) We have fil;, THHg(kr/ka) ~ lims>o il* fily, THHa(kr/ka).
(b) If filkr denotes the usual HKR filtration, then for all s > 0,

gr® fil}, THHu(kr/ka) ~ (filfcs HHa(R/A)) Q5" 25 o (k) .
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Proof. We explain the argument in the context of 3.2(l£;). The other case is analogous, using
the cosimplicial resolution from Proposition 3.11 instead. Put (7<2sk)rs. = (Srs, ® T<2sk)p
and consider the cosimplicial bifiltered object

fil* 759, THHa(kgs_/ka) = T2, THHa ((7<25k) re, /(T<25k) 4) -

Then clearly 7>, THHg(kRge /ka) ~ limg>fil® 750, THHa(kRs_ /k4). Applying lima on both
sides already shows (a). To prove (b), observe that the functor 7>9,(—) is non-exact in general,
but nevertheless it preserves the cofibre sequence
HH.(R;O/A) ®% 2257(25(]?) I THH-(]CR;o/kA) @z ngsk I THH.(ICR;o/kA) ®z ng(s_l)k .

Indeed, consider the spectral sequence®?) from Lemma 3.13 with k replaced by T<2s(k) or
T<o(s—1) (k). Our assumptions on RS, guarantee that both E2-pages are concentrated in even
bidegrees and so the spectral sequences collapse. A closer examination of the induced map on
E2-pages then shows that 752,(—) indeed preserves the cofibre sequence above.

Using this observation, we conclude that the graded pieces of fil* 7o, THHg(kgs_/k4) are

given by

gr* o2 THHa (kps, /) = S7oo, (HHa(R2/A) ®F" X270, (k) )

The right-hand side agrees with 7>5(,_) HHa(R3,/A) @25t (k) since mos(k) was assumed
to be discrete and p-torsion free. Now the HKR filtration can be computed as the cosimplicial
limit filfjxg HHa(R/A) ~ lima 752, HHa (RS, /A). Thus, to prove (b), it remains to check that
— @™ Tos(k) commutes with the cosimplicial limit. Since the HKR filtration stays complete
after — @™ mo5(k) (due to increasing connectivity), we may pass to the associated graded. This
reduces us to an assertion that was checked in the proof of Proposition 3.11 above. ]

3.16. Corollary. — In situation 3.2(IE1), the given cosimplicial resolution induces equivalences
ﬁlzv,hS1 TC._ (kR/kA) = h‘én T>2% TC._(k’R;O/k'A) ,

fil* o1 TPu(kr/ka) i>li£1T>2*TP.(/~cR;O/kA).

ev,t
If we are in situation 3.2(Ey), the cosimplicial resolution from 3.9 induces equivalences
fil%, hor TCa (kr/ka) — lim 2o, TCq (kr/ka ®" Spy)
fil, ;g1 TPa(kr/ka) — lim 7>, TPu(kr/ka ®"Sps) .
Proof. To see the assertion for TC™ in both cases, just observe that (—)"Tev commutes with the
cosimplicial limit and that (79, THHg(—))"Tev ~ 759, TCq (—) holds in this case by [AR24,

Lemma 2.75(vi)]. To show the same for TP, we need to commute (—)p1,, =~ Sev ®F_ — past
the cosimplicial limit.

(-31n the construction of the spectral sequence in Lemma 3.13 we used the Postnikov filtration 7k, while here
we're working with the double speed Whitehead filtration 7<2.k. We could have used the Postnikov filtration as
well to construct a similar spectral sequence as in Lemma 3.13. But we still use the one from Lemma 3.13.

G- Note that gr® is defined as a cofibre, not a fibre. Hence the extra X.
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Let us explain how to do this in case 3.2(E;); the other case is analogous. We use the
bifiltration from Corollary 3.15. By Corollary 3.15(b), cofib(fil® fil}, — fil},) is x + s-connective.
Using Corollary 3.15(a) follows that (fil}, )pr,, ~ (limsso fil® fil}, )., > limgso(fil® fil}, ) pr,, . So
we may pass to the associated graded in s-direction and thus, using Corollary 3.15(b) again, it

will be enough to check

(e HHa(/4) @7 7 (h)) = i (72 HHa (R /A) @5 7 (1)1, )

ev

Now both sides are Z-linear. By [AR24, Proposition 2.54], the construction (—)pr., agrees
with the orbits with respect to Raksit’s filtered circle [Rak21, Notation 6.3.2]. Combining
this observation with [BMS19, Corollary 3.4(1)] (plus an easy argument as in the proof of
Proposition 3.11 to deal with the extra —®5®mas(k)), we conclude that both sides are exhaustive
filtrations on (HHg(R/A) @5® m25(k)) st -

The equivalence can now be checked on associated gradeds. By [Rak21, Proposition 6.3.3],
the n't graded piece of (filjfjxy HHa(R/A) @™ mas(k))n1., Will be an iterated extension of
gt HHa(R/A) ®5® mos (k) for i = 0,1,...,n. A similar argument applies on the right-hand
side. So we can finally deduce the desired equivalence from Proposition 3.11. O

§3.3. Base change

We continue to fix a k as specified at the beginning of §3.2. As a consequence of Proposition 3.11,
we show that the even filtrations constructed in 3.8 satisfy all expected base change properties.

3.17. Corollary. — Let k — I be any map of Ex-ring spectra where | is also connective,
even, and p-torsion free in every homotopical degree. Let 1y =1 Q" S and lgp =l Q" Sr. Let
furthermore key = Tsoxk and ley == T>2.l. Then the canonical base change morphism is an
equivalence

fily, THHa(kp/ka) ®F, lev — filf, THHa(lg/la) .

Proof. Using Corollary 3.14, we see that both sides are exhaustive filtrations on THHg(lg/l4).
It is thus enough to check the equivalence on associated gradeds. Let us now assume we're in
case 3.2(Ey); the 3.2(Es) is analogous using the resolution from Proposition 3.11. Using the spec-
tral sequence from Lemma 3.13, we see that the cosimplicial graded object mo, THHa(krs /ka)
has a finite filtration (%)

satisfies

in every graded degree-wise finite filtration whose associated graded

gr* (s s) THHa(kRe, /ka) ~ 7o, HHa(RS,/A) Q5™ 7o (k)

as cosimplicial bigraded objects. Applying lima (which commutes with — @™ 7o, (k) by the
argument in the proof of Proposition 3.11), we find that gr¥, THHg(kgr/k4) has a finite filtration
in every graded degree in such a way that the associated graded satisfies

gr* grt T THHa(kr/ka) ~ griicr HHa(R/A) @Y% X319, (k)

ev

as bigraded objects. This equivalence is compatible with gr* ke, ~ %2*mo, (k), since the latter
can be obtained from the spectral sequence for THHg(k/k). Using the same for [, the desired
equivalence now follows from the trivial observation

(grf{KR HHa(R/A) @7 22*7@*(]9)) ®%2*n2*(1€) Do (1) =~ gritkr HHa(R/A) @7 X mau(l)

so we're done. O

(3-9)This is not the filtration from Corollary 3.15.
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3.18. Corollary. — Let k — [ be as in Corollary 3.17 and put k‘gfl = 750, (k") as well as
115" = oo, (IM57). Let also t € m_o(k"S") be a complex orientation of k. We regard t as sitting
in homotopical degree —2 and filtration degree —1 of k‘é‘fl Then the canonical base change
morphism is an equivalence

(ﬁlév,h51 TCq (kr/ka) @51 liffl)t — fil%, g1 TCa (Ir/14) -

Proof. Using Corollary 3.16, we see that both sides are t-complete. Upon reduction modulo t,
we get the equivalence from Corollary 3.17. O

A similar base change equivalence exists for fil,, ;51 TPa(kr/k), but one has to be a little
careful about completions. One way to formulate the result would be via Corollary 3.18
combined with the following:

3.19. Corollary. — Let k5" == 729, (k'S"). We have a canonical equivalence

fil*

ev,h

51 TCa (kr/ka) @1 Kty — L%, 151 TPa(kr/ka) .

Proof. Using Corollary 3.16, we see that both sides are exhaustive filtrations on TPg(kgr/k4).
It is thus enough to check the equivalence on associated gradeds. Using Corollary 3.16, we find
that

gr:v,hsl TCq (kr/ka) — gr:\“tsl TPu(kr/ka)

is an equivalence in negative graded degrees and that the right-hand side is periodic. Since
— Qe ghst g kégl will also make the left-hand side periodic, we’re done. O]

§3.4. Comparison of even filtrations

As another consequence of Proposition 3.11, we can show that the even filtrations from 3.8
agree with the those defined by [BMS19; HRW22; Pst23].

3.20. Even filtrations on ordinary Hochschild homology. — In the case k = Z, the
constructions in 3.8 yield filtrations

fily, HHa(R/A), fil5, ,q HCg(R/A), and £, o HPa(R/A).

But HHe(R/A) ~ HH(R/A), is a p-complete Eo-ring spectrum and so we can also consider
the Hahn-Raksit—Wilson even filtrations

ilw-ey HE(R/A)) , filipu o nst HOT(R/A)) . and  flipuy o 0 HP(R/A)) .

These can be regarded as filtrations on HHa(R/A), HCg (R/A), and HPg(R/A) in a natural way.
For HH, we simply regard p-complete spectra as solid condensed spectra per Convention 3.6
and use Lemma 3.7. For HC™ and HP, we must be a little more careful: If HH(R/A) — E is
an S'-equivariant Eo.-map into an even p-complete ring spectrum with bounded p>-torsion,
we regard EhS' as a solid condensed spectrum by performing both the p-completion and the
homotopy fixed points (—)"* "in Spa- We then regard

o - A . 1
ﬁlHRVV—eV,hS1 HC (R/A)p = HH(}EI/IE)HE 22 (EhS ) )
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as a solid condensed spectrum by also performing the limit in Sp,. In the same way we can
regard filjjpy oy 151 HP(R/A), as a filtered solid condensed spectrum.

If F is even, then the perfect even filtration of E is the double-speed Whitehead filtration
T>2.(E) by [Pst23, Lemma 2.36] and its solid analogue. Moreover, (7s2,(E))"Tev ~ o5, (EMS")
by [AR24, Lemma 2.75(vi)] and similarly (7so.(E))Tev ~ 759, (E?S). It follows that there’s a
canonical map fil}, — filjjpw.e, i €ach case.

3.21. Corollary. — Via the comparison maps constructed in 3.20 above, the filtrations

fil5, HHa(R/A), £I%, i HCq (R/A), and £}, ¢ HPa(R/A),

A%

agree with the Hahn—Raksit-Wilson/HKR even filtrations
ﬁlHRW—eV HH(R/A)]/; y ﬁlHRW—eV,hsl HC_(R/A)I/; ; cmd ﬁlHRW—ev,tsl HP(R/A)Q .

Proof. The solid even filtration fil}, HHg(R/A) can be computed by a certain cosimplicial
resolution (in case 3.2(E;) by definition, in case 3.2(Ez) by Proposition 3.11). The same
resolutions also compute the even filtration of Hahn—Raksit—Wilson. The same argument also
works for HCy and HP4 thanks to Corollary 3.16. O]

3.22. Remark. — For later use, let us point out the following consequence: Using Corol-
lary 3.18 for ku — ku® Q ~ Q[fA] and Z — Q[], we deduce that

(13, 51 TCa (kun/kua) €% Q) = (6L, 5 HCq (R/4) &%, QUAIE)

Moreover, the filtration on the right-hand side is the usual Hahn-Raksit—Wilson/HKR even
filtration. This will give us good control over the constructions in §4 after rationalisation.

The filtration on TC™(S/Safqg — 1]])[1/u]€p 1)
graded computes prismatic/q-de Rham cohomology, is also recovered by the solid even filtration.

from Proposition A.3, whose associated

3.23. Corollary. — If S is any p-complete p-quasi-lci A[(p]-algebra of bounded p™-torsion,
then there’s a canonical filtered Eqo-equivalence

ev ~

(ﬁlgv THHa(S/Salq —1]) [%]g)w — filfiRw ey st (TC* (S/Sala —1]) [%](Ap,q_1)>

(where the right-hand side is regarded as a filtered solid condensed spectrum in the way described
in 3.20 above).

Proof. Let us first construct the canonical map in question. For every S'-equivariant Eq.-map
THH(S/SaJg — 1])[1/u] — E into a p-complete even ring spectrum, we get a canonical filtered
Eo-map

Tev

1
(fts, THHA(S/Sale — 1D [E]) " — (roauB)' ™ = rop (BM)
using [AR24, Lemma 2.75(vi)]. This induces the desired comparison map. To prove that
we get an equivalence, we can use the same arguments as before: Choose a polynomial ring
P =Z[z; | i € I] with a surjection P — S and then show that both sides are computed by the

cosimplicial resolution 752, TCq (S/(Sa ®" Sps)[q — 1]) [1/u](Ap7q_1). O
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Finally, we show that in the case k = ku our solid even filtration on THHg(kug/ku,) agrees
with the p-completion of Pstragowski’s perfect even filtration filj_,, THH(kug/ku). This won’t
be needed in the rest of the text, but it is perhaps a nice sanity check.

3.24. Corollary. — The canonical map induced by 2.8 is an equivalence

(filp o, THH(kup /kua)) ) — filf, THHa(kup/kua).
Proof. Let T := THH(kug/kuya) for short. Since THH(Sp) — Sp is eff, we can compute
filp ., T using descent; more precisely, using the uncondensed version of Theorem 2.24. We find
that

ﬁl)l;fev/T T — hén ﬁl’ﬁev/T (T ®THH(Sp) THH(Sp/Spe ))

is an equivalence up to completing the filtrations on both sides. Let us now study the right-hand
side. Fix some cosimplicial degree ¢ and put M := THH(kugr/kug ® Spi) for short. We claim
that there is a canonical equivalence

—

(il oy M5 — il oy My = o0, (M) .

P
If we can show this, we’re done. Indeed, by comparison with the resolution from Proposi-
tion 3.11, we find that (filf_., THH(kug/ku A)); — fil§, THHa(kugr/kua) is an equivalence up
to completion. But the filtrations on both sides are exhaustive and the right-hand side is
complete by Proposition 3.11 again, and so the map must be an equivalence.

To show the claim, first observe that the homotopy groups of ]\/Zp /B ~ HH(R/A ®z PY),
are concentrated in even degrees and p-completely flat over R, where the R-module structure
on Ty (]\//.Tp /) comes from the left T-module structure on M. We would like to show that the
same conclusion is true for 7, (Homz(Q, ]\/Zp) /B) for any perfect even T-module Q; however,
the seemingly obvious argument doesn’t quite work, since 7" is only E; and so there’s no left
T-module structure on Homyp(—, —).

To fix this, observe that T'®rpps,) Sp has a right Sp-module structure commuting with
the left T-module structure. Restricting to mo(Sp) = P, we get a right homotopy action of P
on T' ®@rhu(s,p) Sp- Since mo THH(Sp) = P as well, this action agrees with the right action of P
on T via P - R = 7y(T). In particular, the right homotopy action by P factors through R. An
analogous right homotopy action of R can be constructed on M ~ T ®pp(s,) S%THH(SP (1),
by picking our favourite tensor factor.

This explains how 7, Homp(—, ]\/Zp) can be equipped with an R-module structure. With
this R-module structure, it is still true that the homotopy groups Tr*(J\/J\p /) are concentrated
in even degrees and are p-completely flat R-modules, because HH(R/A ®z P?) is commutative.
This allows us to deduce that the homotopy groups 7, (Homp(Q, M\p) /B) are also concetrated
in even degrees and p-completely flat over R for any perfect even left T-module (). Since M
is bounded below, we deduce that also Homp(Q, ]/\4\][,) is even and its homotopy groups are
p-completely flat R-modules. In particular, this is true for ]\/4\10 itself. By [BMS19, Lemma 4.7],
the p®-torsion in max Homp(Q, ]\/4\1,) is therefore bounded. In fact, there’s a uniform bound N
that works for all (), since we can use the same bound as for R.

Let us use this to analyse the canonical map

8p-ev Mp — lim grp o, (Mp/p®)
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By definition, (grp_., ]\/Ip) /p® is given by the sections over T of the sheafification of the spectra-
valued presheaf ¥2* (o, Homyp(—, M\p)) /p® on the perfect even site Perfe, (7). In homotopical
degree 2%, this presheaf agrees with X2*m9, Homp(—, ]/\/[\p /p%), but in homotopical degree 2% + 1
it has an extra torsion component. However, if we go from o + N to «, then the transition
map will vanish on the torsion component, because N is a uniform bound for the p>-torsion.
Thus, in the limit we get an equivalence hma>o(grp o Mp) /DY >~ lima>o grp . (Mp/p®). The
left-hand side agrees with TFQ*(Mp) since M is already even and p-complete. We conclude that

To2e(My) > filf o My — lim filf o, (M, /p")

is an equivalence up to completion of the filtration on the right-hand side.

Since THH(Sp) — Sp is eff, M will be even flat, hence homologically even over T'. Thus
[Pst23, Remark 2.35] shows filp_, M ~ ﬁl;felv/ > M. By definition, (ﬁl;felv/ M )/p“ is given by
the sections over T' of the sheafification of the spectra-valued presheaf

coﬁb(pa: T>94—1 Homp(—, M) — 7>9,_1 Homp(—, M))

on Perfq, (7). In homotopical degrees > 2x, this presheaf agrees with 79, Homyp(—, M/p®),
but in homotopical degree 2x — 1 there might be an additional component that injects into
»2* =19, 1 Homp(—, M /p®). However, the transition maps from o+ N to a will vanish on this
additional component by our uniform p®-torsion bound, so in the limit we get an equivalence

(1o, M)y = lin (61, M)/p* > limn il o, (M/p?)

At this point we’ve shown that (filp o, M), — 722*(54\1,) is an equivalence up to completion.
But both sides are already complete: The right-hand side by inspection, the left-hand side by
[Pst23, Theorem 8.3(2)]. So we're done. O

3.25. Remark. — The argument can be adapted to any even ring spectrum k such that
7« (k) is a graded polynomial ring over Z with finitely many generators in each given degree.
In particular, it works for £k = MU. We don’t know to what extent Corollary 3.24 is true
in complete generality. At the very least, one would need some finiteness assumption on k;
otherwise k4 and kr won’t be p-complete in general.
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§4. g-de Rham cohomology and TC™ over ku

In this section we’ll finally formulate and prove the precise relationship between the even
filtration on TC™ (kur/kus) and the g-de Rham complex ¢-dRpg/ 4.

Before we begin, we remind the reader of our convention from 1.16 to regard all (¢-)de
Rham complexes or cotangent complexes relative to a p-complete ring (such as ¢-dRg/4) as
implicitly p-completed.

§4.1. The p-complete comparison (case p > 2)

We fix a prime p > 2. We’ll also continue to fix rings A and R satisfying the assumptions
from 3.1 and 3.2.

Our main tool will be a striking result of Devalapurkar. To formulate this result, let us
regard Z,[(,] as a Sp[g— 1]-algebra via ¢ — ¢,. We let St act on THH(Z,[(,]/Splg—1])p in the
usual way and let Z; act via A.6. We let S U act on ku!“? via the residual S* ~ S'/C,-action
and let Z; act via the Adams operations on kuy.

4.1. Theorem (Devalapurkar [Dev25, Theorem 6.4.1]). — For primes p > 2, there exists an
S x Z; -equivariant equivalence of Eoo-ring spectra

THH(Zp[p]/Spla — 1]]); = 750 (kutcp) )
Moreover, this equivalence fits into a commutative diagram of S*-equivariant Eo-algebras

THH(Zy[(p)/Spla — 1]]); —= 5 7oo(kuf®?)

]

THH(F,) 1

T>O(Zp )

where the bottom row is the equivalence from [NS18, Corollary IV.4.13].

4.2. Remark. — Theorem 4.1 was conjectured for all p by Lurie and Nikolaus. By an
unpublished result of Nikolaus, Theorem 4.1 is true as an S'-equivariant E;-equivalence for
all p (see Theorem 4.16 below). As far as the author is aware, constructing an S'-equivariant
E-equivalence case p = 2 is still open.

4.3. Remark. — If we also let ¢ € mo(ku™® 1) = ku’(BS') denote the class corresponding to
the standard representation of S* on C, then the map from Th?orem 4.1 sends q — q.
Moreover, there’s a unique complex orientation t € 7_y(ku") satisfying ¢ — 1 = St. In the

following, we’ll frequently use 7 (ku™ 1) = Z[B][t], and we’'ll identify this graded Z[t]-algebra
with the filtered ring (¢ — 1)*Z[q — 1], where (¢ — 1) in degree 1 corresponds to 3.

4.4. The comparison map I. — We import the equivalence from Theorem 4.1 into the
solid world via 3.6. Using this equivalence, we can construct an S'-equivariant map of solid
condensed spectra as follows:

(THHa(Sr/S4) @8, 4., Sa) ®" THHa(Zy[Gy]/Splq — 1]) —— THHa(Sr /S4)1% @ ku'Cr

| |

THHa((R®'% 4 A)p[Cpl/Salla — 1]) ------------------ » THHa(kup/kuy)cr
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The map in the top row is given by ¢, /s, ®" (4.1), where ¢,,/s, denotes the relative cyclotomic
Frobenius on THH(—/S4). The right vertical arrow comes from lax symmetric monoidality
of (). The left vertical arrow is an equivalence since THH is symmetric monoidal. So the
dashed bottom horizontal arrow exists.

Now THHg(Z,[¢p]/Splq—1]) — ku'“» sends the generator u € m to a unit. Indeed, this can
be checked modulo (¢ —1) = ft, so we reduce to the same question for THH(F,) — Z;C” . Under
the equivalence Z;Cp ~ THH(F,)!», this map becomes the cyclotomic Frobenius for THH(TF,),
which is well-known to send u to a unit. The diagram above thus induces an S!'-equivariant
map

Yr: THHa(RP)[(,]/Salg — 1])[4] — THHa(kug/ku)“?,

u

where R?) .= (R ®% & A)p as in A.5. From g, we can now construct a filtered map

Ui 815, TCq (RV[G,)/Salg — )[A]7) ) — filf, TPa(lug/lua)

where the filtration on the left-hand side agrees with the Bhatt—Morrow—Scholze filtration, the
Hahn-Raksit-Wilson, and the Pstragowski-Raksit even filtration. To construct v}, we have to
distinguish the two cases:

(Eq) In situation 3.2(E{), we construct ¢} as the limit

. _ . A 4.4) .
lipn 72 TCq ((RS)P[G1/Salla — )]}, ) 5 tim oo, TPa(lups, /)

The left-hand side is fil%, TCq (R®[(,]/Salq — 1])[1/4] (Ap 4—1) Py quasi-syntomic descent

for the Bhatt—-Morrow—Scholze even filtration and the right-hand side is filey TPg(kug/ku,)
by definition.

(E2) In situation 3.2(Es), we construct ¢% by applying (fil}, (—))"T/C»)ev to the map from 4.4
and composing with a certain canonical map

T/Cp)ev

(13, THHa(kup /kuy)')" — £, g TPa(lcug/kua)

that will be constructed in 4.6 below.

4.5. Even filtrations and the Tate construction. — To construct such a map, let more
generally T be a complex orientable solid Ej-ring spectrum and let M be an S'-equivariant left
T-module such that M"C» is solid homologically even over T"C». Let T% b= filx, TS " and
T f= filx, T ', First observe that we have an equivalence

Tg{,gl ®;e}bsl fil%, JThCp MM =, ﬁl:v JT*Cp MtCr
Indeed, choose a complex orientation t € m_o(T"5"). It’s well-known that TS ~ ThS'[¢=1]
and M*C» ~ M"C»[t~1]. In particular, we see that both sides above are exhaustive filtrations
on M'®» and so it’s enough to check the equivalence on graded pieces. Since t sits in even
degree —2, if we take any m,-even envelope over T " or T"Cr and invert t, we get a my-even
envelope over Tt 'or T*Cr | respectively. Since the associated graded of the even filtration can

be computed by successively taking m.-even envelopes (see [Pst23, §5]; the solid analogue is
discussed in 2.7), the claimed equivalence follows.
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Now let (—)"rev and (—)!“ev denote the synthetic fixed point and Tate constructions
from [AR24, Definition 2.61]. We have canonical maps

ﬁl;v /ThCp Mth - (ﬁlgv /T M
Téfl ®- ﬁl* M th,ev _ ﬁl* M th,eV )
ev /T ev /T

Ths!
Composing these with the equivalence above, we get a canonical map

1%, qucy, MUCr — (fil%, M) e

4.6. The comparison map II. — To construct the map that we need in 4.4(Es), we apply
(—)MT/Cplev to the general construction from 4.5, where (—)*T/Cplev denotes fixed points in
the sense of [AR24, §2.3] with respect to the even filtration on S[S*/C,]. It then remains to
check that the canonical map

= h(T/Cp)ev
fl7, TPa(kuup/lou) — ( (17, THHa(lcug/kug)) )

is an equivalence. To see this, we’ll use the cosimplicial resolution from Proposition 3.11. A
similar argument as in the proof of Corollary 3.16 can be used to verify that (—)!¢»ev commutes
with the cosimplicial limit. We can thus reduce to the case where THHg(kur/kuya) is already
even. The desired result then follows from [AR24, Lemma 2.75(vi)], its analogue for (—)nc, ...,
and the classical fact that (=)' ~ ((=)/%)"5/C) holds on bounded below p-complete spectra
by [NS18, Lemma I1.4.2].

4.7. The g-Hodge filtration. — We can pass to the 0" graded piece of our filtered
comparison map 1} and use Proposition A.3 to obtain a map

U ¢-dRgja — groy ;51 TPa(kug/kus) ~ grd, o TCq (kup/kuy) .

Now gr? ;g1 TCq (kugr/kuy) is a graded module over gr’ , (kuhsl) ~ 22*7r2*(kuhsl). Hence

the double shearing %72 gr* , o, TCq (kug/ku,) is a graded module over Z,[5][t], with |3] = 2,
|t| = —2.141) We can regard t as a filtration parameter, so that the graded Z,[S3][t]-module
S gr* o TCq (kug/kuy) defines a filtration on grgv,hsl TC, (kur/kuys). We define the

ev,h

q-Hodge filtration as the pullback

A} 1qg ¢-dRgja —— X7 g, 510 TCq (kug/kuy)

| - J

q-dRp/4 grgv,hsl TCgq (kug/kuy)

The name q-Hodge filtration is justified by the fact that ﬁl;—Hdg q-dRpR/4 is indeed a g-deformation
of the Hodge filtration on dRg/4. This is part of the main result of this subsection, which
we can now formulate and prove. Here we identify the graded Z[t]-algebra Z,[5][t] with the
(¢ — 1)-adic filtration (¢ — 1)*Zp[q — 1] as explained in Remark 4.3.

(4D Also note that since everything is Z-linear, the double shearing functor £2* is symmetric monoidal.
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4.8. Theorem. — Let p > 2 be a prime and let A and R satisfy the assumptions from 3.1
and 3.2. Then the map %, from 4.6 induces an equivalence of graded Zy[B][t]-modules

fily pag ¢-dRpja — 7% grl, o1 TCq (kup/kua)

where the left-hand side denotes the completion of the q-Hodge filtration ﬁl;,Hdg q-dRpg/4 from
4.7. Moreover, modulo 8 and after rationalisation, we get equivalences

fil7 fag ¢-dR R/ ®Iip 1] Zolt] — filfrag AR /4

N

1 ~ 1
15 1ag AR R/ 4[5 ] (1) — flffag,g—1) WResal;]lg — 1]
with the usual Hodge filtration and the combined Hodge and (q — 1)-adic filtration, respectively.

4.9. Remark. — In case 3.2(E,), all equivalences in Theorem 4.8 are canonically Ei-
monoidal. In fact, if Sg can be equipped with an [E,-algebra structure in S -modules for any
2 < n < oo, then all equivalences will be canonically E,,_1-monoidal. To see this, observe that
for any T' € Algg,(Mods, (Spy)), we can use the same construction as in 4.4 to produce an
Sl-equivariant map

THHa (T &8, 4., S4) ®" Z[G]/Salg — 1) [5] — THHa(ku ®" T/kua)"";

these maps assemble into a symmetric monoidal transformation of symmetric monoidal functors
Algg, (Modsg , (Spa)) — Algg, (Sp.BSl). If Sgp admits an E,,-algebra structure in S 4-modules, then
Sk € Algg,_,(Algg,(Mods, (Spa))) and so ¥ is S'-equivariantly E,_s as a map in Algg, (Spa),
hence S'-equivariantly E,_; as a map in Sp,. The other parts of the construction clearly
preserve E,,_j-monoidality.

If we are in case 3.2(IE;), then a priori we only get Eg-monoidal structures. However, we
can a posteriori upgrade everything from Eg to Eo, by applying Theorem 4.17 below to the
given resolution R — R%..

The main step in the proof of Theorem 4.8 is to describe % modulo (g — 1).

4.10. Lemma. — The reduction modulo (q — 1) = St of the map ¥% from 4.6 agrees with the
canonical Hodge completion map

dRpja — (Tf\{R/A ~ gr(e)V’tSl HP4(R/A).

Proof (initial reduction). In the following, we’ll assume we're in case 3.2(Ez). In case 3.2(E,),
we repeat the arguments below instead for each term in the cosimplicial resolution R2, with
the even filtration replaced by 7>o4.

Put R == R ®Iip F, and RW) = E@i & A for short. If we reduce the diagram from 4.4

modulo (¢ — 1) = t, we obtain the following commutative diagram:

(THHa(Sk/Sa) ®%, 4,0, S4) ®" THH(F,) —— THHa(Sp/Sa)'" " ZLCr

| |

THEH, (E(p) [84) ----mm-mm oo » HHa(R/A)'
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The top row is induced by the equivalence THH(F)) ~ T;o(Zf,C” ) from [NS18, Corollary IV.4.13]
and the relative cyclotomic Frobenius ¢,/s5, for THH(—/S4). After passing to homotopy S L
fixed points, the bottom row of this diagram factors induces a map

ohst. TCg (R®)/S,) [%]; — HPa(R/A).

The key observation is now that the map W}%Sl can be constructed without the choice of a
spherical lift Sg. Let us interrupt the proof for the moment and discuss how this works. [

4.11. Constructing E’}{Sl without a spherical lift. — Let us first assume that A = W(k)
is the ring of Witt vectors over a perfect field of characteristic p. In this case, Petrov and
Vologodsky [PV23] construct an equivalence TPg(R/S4) ~ HPg(R/A) without choosing any
spherical lift Sg. We claim that this equivalence holds, in fact, for arbitrary A, and that the
composition with the relative cyclotomic Frobenius

o1 - TCq (R /S4)[1]) — TP(R/Sa)

agrees with the map W}%S ", Both of these claims follow from work of Devalapurkar and Raksit
[DR25]: They give a new proof of the equivalence TPg(R/S4) ~ HPg(R/A), which works for
arbitrary A, and from their proof it will be apparent that the maps indeed coincide. The new
proof is based on the following result:

4.12. Theorem (Devalapurkar—Raksit [DR25]). — Let j == 7>0(Sk(1)) be the connective
cover of the K(1)-local sphere.

(a) There is an equivalence THH(Z,), ~ T50(j'°?) as well as a commutative diagram

j —— THH(Zy),

l W J

7, — THH(F,)

of St-equivariant (in fact, cyclotomic) Eoo-rings. Moreover, there exists a dashed diagonal
arrow that makes the upper left but not the lower right triangle commute S*-equivariantly.
(b)  The horizontal maps j — THH(Z,)p and Z, — THH(F,) are S'-nilpotent, that is, for any
spectrum X with S'-action the maps X ®j — X®THH(ZP)$ and X ®7Z, — X @ THH(F,)
become equivalences upon (=)' .
The new proof of the equivalence TPg(R/S4) ~ HPg(R/A) in [DR25, §5] then proceeds as
follows: By Theorem 4.12(a) we have an Sl-equivariant commutative diagram

()5

THHa(R/S4) ®].' Ly THHa(R/S4) ®;HH.(ZP) Ly
1 ;

<=>tﬂ
~\tS
THHa(R/S ) ®® THH(F,) =L THHa(R/S4) @ sit1a(z,) THH(F,)
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By Theorem 4.12(b), the horizontal arrows and the left vertical arrow become equivalences
after applying (—)'".(+2) Hence after (—)'S' the dashed vertical arrow exists and it induces
the desired equivalence HPg(R/A) ~ TPg(R/S4).

Using THHg(R/S4) ~ THHa(Sr/Sa)®" THHa(Z)), it is also apparent that the composition
of this equivalence with the relative cyclotomic Frobenius qb;fSlA agrees with the map E}}%S 1, as
we’ve claimed above.

Proof of Lemma 4.10 (end of proof). The proof can now be finished as follows: Let S be a
p-torsion free p-complete p-quasi-lci A-algebra, put S := S/p and S ») .= G ®5’ " A. Via quasi-
syntomic descent as in the proof of Proposition A3, we can define a Bhatt—Morrow—Scholze-style
even filtration filgiq o, pe1 TCq (S®) /S 4)[1/u]; together with a map

E*S: fﬂ‘)](BMSfev,hS1 TC; (g(p) /SA) [%]; - ﬁl’\léMSfev,tS1 HP-(S/A) )

to construct this map, we use 4.11 above. By passing to animations, we can also cover the case
S = R.(43) A comparison with prismatic cohomology as in the proof of Proposition A.3 shows
that the 0'" graded piece of ¥% has the form

0% 5w a ~ dRg/a — dRgya;

here we also use the crystalline comparison for prismatic cohomology [BS19, Theorem 5.2]
and the fact that the de Rham cohomology of S agrees with the crystalline cohomology of its
reduction S. If we can show that @05 is the canonical Hodge completion map, then we’ll be
done, because from the comparison results in Corollaries 3.21 and 3.23 it’s clear that in the
case S = R the map @% agrees with the reduction of zp% modulo (¢ —1).

To show that ¢% has the desired form, we can now use quasi-syntomic descent. In particular,
we may reduce to a situation where S/p is relatively semiperfect over A (i.e. the relative
Frobenius S/p ®a,4 A — S/p is surjective). Then everything is even, hence both sides of @g
are double speed Whitehead filtrations on even spectra and @05 is a map between two static
condensed rings. Whether this map is the correct one can be checked on the level of sets and
hence after any p-completely faithfully flat base change. Let A, denote the p-completed colimit
perfection of A. By our assumption 3.1, A — A, is p-completely faithfully flat, and it can be
lifted to an Eo-map Sg4 — Sa_, (see Lemma A.1 for example). Via base change along this
map, we may reduce to the case where A is perfect. Then S/p is semiperfect on the nose and
50 Ajpp = W(S?) — S is surjective.

Now everything becomes rather explicit: Let J := ker(Aj,s — R) and let Acpys := Da,,(J)
denote the p-completed PD-envelope of J. It’s well-known**) that

dRg/a ~ dRR/a,,; ~ Aarys -

inf

Since the un-p-completed PD-envelope A2, . of J C Ay is contained in Aj¢[1/p], the Hodge

crys

completion map Agpys — Kcrys is uniquely characterised by the following two properties:

(42 The functor (—)'SS1 factors through a certain category, denoted 1@0\(1"5”[51] by [PV23] and (Modésl)?pjvl)

by [Dev25]; the S*-nilpotence property from Theorem 4.12(b) ensures that j — THH(Z,); and Z, — THH(F,)
become equivalences in that category.

(43 Observe that R® might only be an animated ring.

(4‘4)Indeed, the first equivalence follows from the fact that A and Ain¢ being are perfect §-rings. For the
second, note that dRg/a, , is p-torsion free and contains divided powers for all x € J, as can be seen from
dRz/z[«) — dRr/a,,,. Hence there’s a map Acys — dRg/a,,, and this map is an equivalence modulo p by
[BMS19, Proposition 8.12].
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(a) It is a map of Aje-modules.
(b) It is continuous with respect to the natural topologies on either side.

It’s clear from the construction that @% satisfies (b) since it is a map of condensed rings. To
see (a), just observe that in the construction of 1%, instead of working with THHa(—/S4),
we could have worked with THHa(—/Sa, ), where Sa, , denotes the unique lift of the perfect
0-ring Aj,¢ to a p-complete connective Eo-ring spectrum. O

Next let us describe w% after rationalisation.

4.13. Lemma. — The rationalisation of the map 1/)% from 4.6 fits into a commutative diagram

0
A VR,0p A

Q‘dRR/A[%](q_l) - grgv,hSl TCy (kuR/kuA)[%](q_n

QJ lz

dRg/a[5]la — 1] ARy a3 hagle — 1

where the left vertical arrow is the usual equivalence for rationalised q-de Rham cohomology,
the right vertical arrow is obtained via Remark 3.22, and the bottom arrow is the natural Hodge
completion map.

Proof. There’s a unique bottom arrow that makes the diagram commute, so we must show
that this arrow is the natural Hodge completion. We’ll use an argument suggested by Peter
Scholze (any errors are due to the author). Observe that the usual rationalisation equivalence
qdeR/A[l/p](Aq_l) ~ dRp/a[1/pllg — 1] is Z, -equivariant, where the action on the left-hand
side is the one discussed in A.6 and on the right-hand side u € Z,; acts via q — ¢“. Since the
equivalence from Theorem 4.1 is also Z;-equivariant, we obtain a Z;-equivariant map

dRpya[3]la — 1] — dRp/al;] el — 11,

which we must show to agree with the natural Hodge completion map. As we’ll see, thanks to
Z;—equivariance and Lemma 4.10, it has no other choice!

Let ¢ := (—1(1 + p) denote a topological generator of Z). In general, if M € D(Z,) is
equipped with the trivial action of Z, there’s a functorial equivalence

17 = 1 =1 oL

Indeed, the fixed points M[1/p][q — 1]¥=! would be M[1/p] ® X~'M[1/p]; to kill the shifted
copy of M[1/p], we take the tensor product along Z;f:l — L.

Applying this in the situation at hand, we get a map dRp,4[1/p] — dRR/A[l/p]f{dg. By
comparison with the reduction modulo (¢ — 1) and using Lemma 4.10, we see that this map

must be the canonical Hodge completion map. By applying (— ®5P Qpllg — 1]])?(1_1) to this map,
we deduce that the original map must have been the natural Hodge completion as well. O

Proof of Theorem 4.8. By definition of the filtration fil} 4, g-dRg/4 (see 4.7), the base change
ﬁl;,Hdgiq—dRR/A ®Iip[ﬁ][[t1] Zy[t] is the pullback of the filtered module ¥~ 8rh, hst HC, (R/A)
along 1% dRp/a — grgv nst HCq (R/A). The rationalisation ﬁl;,Hdg q—dRR/A[l/p](Aq_l) can be
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described analogously. Using Lemmas 4.10 and 4.13 as well as the fact that any filtration is the
pullback of its completion (see 1.16), we deduce that

7 g ¢-AR /A ®F 111 Zolt] — filfag AR R4
1A ~ 1
ﬁlZfHdg q‘dRR/A[E](q_n - ﬁl?Hdg,q—n dRR/A[;] lq —1]
are indeed equivalences. Finally, whether
il} pag a-dRg/a — X7 grf, TCq (kug/kuy)

is an equivalence can be checked modulo 3. By the base change result that we’ve already shown,
this follows from filjyy, dRp/4 ~ X 72* gry, HCg (R/A). O

§4.2. The p-complete comparison (case p = 2)

In this subsection, we’ll discuss how much of §4.1 can be salvaged in the case p = 2. We expect
that Theorem 4.8 is still true for p = 2, but our proof fails at several places. Here are the two
main issues:

(1) The S*-equivariant Eo,-equivalence THH(Zy[Cp)/Splq—1]) ~ m0(ku’“?) from Theorem 4.1
1s still conjectural for p = 2.

(1) Theorem 4.12 is provably false for p = 2.

The objection in the second issue is essentially the discrepancy between Nygaard and divided
power completion at p = 2; see [DR25, Remark 0.5.3] for example. The goal of this subsection
is to show that both issues only affect the case 3.2(Esg).

4.14. Theorem. — If R satisfies the assumptions from 3.2(IE,), then the conclusions of The-
orem 4.8 are true in the case p =2 as well.

4.15. Remark. — Note that a priori ﬁl;Hdg q-dRpg/4 will only be a graded Eq-algebra over
Zp|B][t]. A posteriori, we get an Eqo-structure by applying Theorem 4.17 below to the given
cosimplicial resolution R — R%.

To show Theorem 4.14, let us first address the less serious issue (!) above.

4.16. Theorem (Nikolaus, unpublished). — For all primes p there exists an S*-equivariant
equivalence of E1-ring spectra

THH(Z,[G]/Spla — 1]);, — 720 (ku'“r) ,

compatible with THH(F,) ~ Tgo(Z;Cp). For p > 2, this equivalence agrees with the underlying
S1-equivariant Ei-equivalence of Theorem 4.1.

Proof. We thank Sanath Devalapurkar for explaining the following argument to us; any errors
are our own responsibility. Let us first construct an S'-equivariant E-map S[g — 1] — kutCr,
where the left-hand side receives the trivial S' action and the right-hand side the residual
St ~ S1/Cp-action. It’s enough to construct an Sl-equivariant Eo.-map S[g — 1] — ku"“r or
equivalently, an Eos-map S[g — 1] — (ku/“»)a(57/Cp) ~ ku"S". But the element ¢ € ﬂo(kuhsl)
is is detected by an E.-map S[q] — kuS"; see Corollary C.2. This factors over the (¢ — 1)-
completion S[¢] — S[¢ — 1] and so we obtain the desired map.
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Now let us construct an Eo-S,[¢q — 1]-algebra map Z,[(,] — kut“”. To this end, observe that
Zp[(p] is the free (¢ —1)-complete Eo-S,[q— 1]-algebra satisfying [p], = 0. Indeed, since [p]y = 0
holds in Zy[(p], it certainly receives an Eg-Spy[g — 1]-map from the free guy. Whether this map
is an equivalence can be checked modulo (¢ — 1), where it reduces to the classical fact that [F,, is
the free Eq-algebra satisfying p = 0. Since [p], = 0 holds in 7 (ku!“?) = 7, (ku'® 1) /Iplq and any
nullhomotopy witnessing this must be unique by evenness, we get our desired Eo-Sp[¢—1]-algebra
map Zy[(p] — ku!“?. Tt induces S'-equivariant E;-S,[g — 1]-algebra maps

THH (Zy[¢p)/Spla — 11);, — THH (ku'“? /S[g — 1])7 — ku'“"
where the arrow on the right comes from the universal property of THH(—/S[¢ — 1]) on
Eoo-Sq — lﬂ—algebras.(4'5) Since the left-hand side is connective, the above composition factors
through an S'-equivariant E;-S,[¢ — 1]-algebra map THH(Z,[¢p]/Splq — 1])p — 7>0(ku'c?).

We wish to show that this map is an equivalence. This can be checked modulo (¢ — 1), so it
will be enough to prove that modulo (¢ — 1) we obtain the equivalence THH(F,) ~ 7 (ZZC” )
from [NS18, Corollary 1V.4.13]. To this end, observe that by the universal properties of Z,[(,]

and [F), as free Fo-algebras, the Eo-map ku!“r — Z;,Cp fits into a commutative diagram of
[Eq-algebras

Zp|Cp] — ku'“r

| |

tC,
p Zp

which on the level of underlying spectra exhibits the bottom row as the mod-(q — 1)-reduction
of the top row. Using the same recipe as above, the bottom row induces an S'-equivariant
maps of E;-algebras

THH(F,) — THH(Zy?) — Zp "

After passing to connective covers, we get an S'-equivariant Ej-map THH(F,) — 7>¢ (ZZCP )

We claim that this map necessarily agrees with the underlying E;-map of the S'-equivariant
Eso-equivalence THH(F,) ~ 750(Z°) from [NS18, Corollary IV.4.13]. Indeed, by the universal
property of THH for E..-ring spectra, this equivalence must also be given by a composition as
above, where the first arrow is given by the non-equivariant Eo.-map F, — Zf, ? induced by the
equivalence. But ), is the free Ep-algebra with p = 0. Since Z;}C” is even, any nullhomotopy

witnessing p = 0 is unique, and so there’s a unique Eo-map F, — ZZCP . This shows that the S'-
equivariant E;-map THH(F,) — 7-20(220”) agrees with the equivalence THH(F),) ~ 7 (ZZC” )
and concludes the proof that THH(Z,[(,]/Splg — 1])p — Ts0(ku'“?) is an equivalence.

To show that for p > 2 this equivalence agrees with the underlying S'-equivariant E;-
equivalence of Theorem 4.1, we can use the same argument as above, noting that the [Eo-

S[g — 1]-algebra map Z,[¢y] — ku'“? is unique. O
We can now show Theorem 4.14.

Proof sketch of Theorem 4.14. Let us indicate how to modify the arguments in order to avoid
those that don’t work for p = 2. To construct the comparison map ¢% as an Eg-map, we don’t

(45)n particular, this map THH(ku‘“” /S,[g—1])p — ku'“? is not the usual augmentation, as the augmentation
would only be S'-equivariant for the trivial S*-action on ku“».
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need the full strength of Theorem 4.1, so Theorem 4.16 will suffice. In the proof of Lemma 4.10,
we don’t need quasi-syntomic descent (and in particular, we don’t need Theorem 4.12, so we
circumvent the more serious issue (!!') above), since the given resolution R — R?, places us
already in a relatively semiperfect situation.

It remains to explain how to adapt the proof of Lemma 4.13. We don’t know if the Z; -
equivariance argument still works, but fortunately, we can replace it by a simple argument similar
to the proof of Lemma 4.10. In the given resolution, RS /p is already relatively semiperfect
over A and so TCy (kugs, ®"Q,/kus ®"Q,) is already even. This reduces the question whether
1#%7(@1) is the correct map to a question that can be checked on underlying sets. In particular,
we can base change again to a situation where A is already perfect, so that RS /p is semiperfect
on the nose. If we put A? . = W((RS,)"), J® = ker(Af, — R2%), and let A% . denote the

inf " inf crys

p-completed PD-envelope of J*®, then
q—dRR;o/A[%](Aq,l) ~ dRR;o/A[%,] lq —1] ~ A(.:rys[%][[q —1].

So to prove Lemma 4.13 in this particular case, we must check whether a certain map
Alysl1/pllg — 1] — Agys[1/ p]f{dg [q — 1] agrees with the canonical Hodge completion map. As
in the proof of Lemma 4.10, the Hodge completion map is uniquely determined by:

(a) It is a map of A2 [q — 1]-modules.

inf

(b) It is continuous with respect to the natural topologies on either side.

Condition (b) is again clear from our condensed setup, whereas (a) follows by working over
Sae . rather than S4. This finishes the proof. O

§4.3. The case of quasi-regular quotients

Let us continue to fix a prime p (with p = 2 allowed). Let A be a d-ring as in 3.1 and suppose
that R is an A-algebra satisfying 3.2(IE1) for the identical cover id: R — R. In other words, R is
a p-quasi-lci A-algebra with a lift to a p-complete connective [Eq-algebra Sg € Algg, (Mods, (Sp))
such that R/p is relatively semiperfect over A.

These assumptions ensure that ¢-dRg/4 and dRg/4 are static rings and that the Hodge
filtration filjq, dRg/4 is a descending filtration by ideals (see [Wag25, Lemma 4.18(b)]). As it
turns out, the g-Hodge filtration from 4.7 has a very explicit description in this case.

4.17. Theorem. — Under the assumptions above, the q-Hodge filtration ﬁlg,Hdg q-dRp/4 is
the descending filtration by ideals given by the (1-categorical) preimage of the combined Hodge-
and (q — 1)-adic filtration under the rationalisation map ¢-dRpja — dRg/a[1/p]lg — 1]. In
other words, there’s a pullback

i1y t1dg ¢-dRR/ A — lfjag 1) ARe/a[5]la — 1]

| : |

¢-dRp/a dRp/a[5]la — 1]

in the 1-category of filtered (¢ — 1)*Alq — 1]-modules. In particular, ﬁl’(;,Hdg q-dRpg/a is inde-
pendent of the choice of the spherical 81-lift Sg, and canonically a filtered Eoo-algebra over the
filtered ring (¢ — 1)*Afq — 1].
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Proof. That g-dRp /4 is static and ﬁlg,Hdg q-dR g/ 4 is a descending filtration by subgroups follows
from the corresponding assertions for dRp/4 and filjjq, dRg/4, using ¢-dRg/4/(¢— 1) ~ dRp/a
and fil} 4, ¢-dRp/a/8 =~ filjjqy dRg 4 by Theorems 4.8 and 4.14.

To show the description as a preimage, we first note that ﬁl;_Hdg q-dRpR/4 is the preimage of

its completion under ¢-dRp/4 — q—(Tl\%R/A and likewise for ﬁl?Hdg -1 dRpg/a[l/p]lg—1]. Thus,
it remains to show that the filtration on 9 TCg (kug/kuy) induced by the homotopy fixed point

spectral sequence is the preimage of the analogous filtration on 7y TCu(kugp ®" Q,/kus ®" Q,)
under the rationalisation map

7o TCyq (kupr/kus) — mo TCa(kup ®" Qp/kus @ Q)) .

As both filtrations are complete, it will be enough to show that the map on associated gradeds
is injective. That is, we must show mo, THHa(kugr/kus) — mox THHa(kur @" Q,/kus @" Q)
is injective. This can be checked modulo 3, so we’ve reduced the problem to checking injectivity
of mox HHa(R/A) — 72 HHa(R®" Q,/A ®" Qp). By the HKR theorem, we must show that

7" A\Lga — 7" \Lg/a ®" Q,

is injective for all n. Our assumptions guarantee that X 'Ly /4 is a p-completely flat module
over the p-torsion free ring R and so each X~ A" Ly /4 will be a p-torsion free R-module. [

§4.4. The global case

In this subsection we’ll sketch a global analogue of the p-complete comparison between g-dR /4
and TC™ (kug/kua) from §4.1. So let us no longer fix a prime p and update our assumptions
on A and R accordingly.

4.18. New assumptions on A and R. — From now on, A and R must satisfy the following;:

(A) We assume that A is a perfectly covered A-ring. That is, the Adams operations Y™ : A — A
are faithfully flat; equivalently, A admits a faithfully flat A-map A — A into a perfect
A-ring. Moreover, we assume that for all primes p the p-completion A, satisfies 3.1("C),
with SZ, denoting the p-complete spherical lift.

(R) We assume that R is a quasi-lci A-algebra in the sense that the cotangent complex Lr/a
has Tor-amplitude in homogical degrees [0,1] over R. In addition, for every prime p, the
ring R must have bounded p™-torsion and its p-completion ]?ip must satisfy one of the
conditions 3.2(E2) or (E1) (but not necessarily the same for every p). We let Sg, denote
the p-complete spherical lift of J/%p.

We note that the p-complete lifts S3, and Sg, for all primes p can be glued with A®Q and RQQ
to a connective E-ring spectrum S, and a connective Ej-algebra Sg € Algg, (Mods, (Sp))
satisfying

SA®Z~A and SR®Z~R.

By construction, S4 acquires the structure of a cyclotomic base. If 3.2(Ey) was chosen for
every p, then Sk will be an Es-algebra in Ss-modules. We also let kuzg, = (ku®$S gp)g and
kuy :=ku® S, and define kug, and kug analogously.

4.19. Remark. — Despite the restrictive hypotheses, there are many examples of such A
and R, as we’ll see in §6.1.
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To carry out our global constructions, we’ll proceed by gluing the p-complete constructions
from §4.1 with the rational case. For the gluing we’ll the following notion:

4.20. Profinite completion. — A spectrum X is called profinite complete if the canonical
map
X—>lmX/m=~|]|X
= i X = ] 1%
is an equivalence. The spectrum on the right-hand side will be called the profinite completion
of X and denoted X.
Analogous notions can be defined for solid condensed spectra. The the solid tensor product
of two bounded below profinite complete spectra will be profinite complete again. For a proof,
see [Wag25, Lemma B.8] and replace each ¢-factorial (¢; ¢), by an honest factorial n!.

4.21. Profinite even filtrations. — Let A and R denote the profinite completions of A
and R. Let k be any connective even E.-ring spectrum such that (k) is p-torsion free for
all primes p (the most relevant case is of course k = ku, but we’ll also need k£ = ku® Q and
later k = ku®“m). Let ki =k ®" [[,S4, and kg == k®"[[,SR,. We wish to construct an
appropriate even filtration
fily, THHa (k7/k2) -
Once we have this, we can also construct versions for TC, and TPg via
_ ATev
I}, ho1 TCu (kR/kA) = (RIS, THHa(kR/kA))" ",

fil?, 51 TPa(k/k) = (filf, THHa(kz/k2))"

A%
Before we discuss the construction in general, let us start with two special cases:

(E1) If we chose condition 3.2(E) for all primes p, and Sg, — Sgs _ are the given cosimplicial
resolutions, we put kgs =k @" Hp S Re. ., and define our filtration via

fil}, THHa (kg /k2) = lim 72, THHa (kRs, /kX) -

(E2) If instead 3.2(E2) was chosen for all primes p, so that kg is an Eg-algebra in kj-modules,
we simply define fil5, THHa(kz/k4) to be the solid even filtration of THHg(k5/kZ) as a
left module over itself.

In general, let P; and P, be the set of primes where we choose 3.2(E;) and 3.2(E3), respectively.
Let kg, = Hp€P1 kg, and kR g, == Hp€P2 kg,. Then

THHa(k7/k4) ~ THHa (kR g, /k4) X THHa (kR k. /k2)

and we can apply the constructions from (E;) and (E2) to the two factors separately.

The results from §§3.2—-3.4 can all be adapted to the profinite case in a straightforward
way and the proofs can be copied verbatim. For example, in case (E2), let P == Z[x; | i € I]
be a polynomial ring with a surjection P — R and let P be its profinite completion. Let
Sp = S[z; | i € I] and let Sp be its profinite completion. Finally, let S — Spe denote the
profinitely completed Cech nerve of S — Sp. Then

fily, THHa (kg /k2) — lim 75, THHa (kr/kz ®" Spe) .

To show this, we can simply copy the proof of Proposition 3.11. The key points are that
THHa(Sp) — Sp is still solid faithfully even flat, which can be shown by the same argument as
in Lemma 3.12, and that HHa(R/A ®7 P*) is still even.
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4.22. Lemma. — For k = ku, we have canonical equivalences

fily, THHa (kup/kug) — [ fil5, THHa (kug, /kug,) ,
p
ﬁlzv,hsl TCI_ (kuﬁ/ku;‘\) — H ﬁlZv,hS1 TCI_ (kuﬁp /kuA\p) )
p

fl%, ;51 TPa(kug/kuz) — [[fils, .50 TPa(kug,/kui,) .
p

Proof. Let us first show the assertion for fil;, THHa. Note that kuz ~ [, kua, ~ (kua)”" is the
profinite completion of ku4 and likewise for kug. Using Lemma 3.7 and its profinite analogue,
we see
THHa (kug/kug) ~ THH(kug/kus)" ~ [ | THHa(kug, /kuz,) -
P

Applying the same observation to the cosimplicial resolutions THHg(kugs /kuz) (in the special
case 4.21(E;)) or THHg(kug/kug ®" Spe) (in the special case 4.21(E;)) or a mixture thereof
(in the general case), we get the desired equivalence for fil},, THH,.

The equivalence for filf ;¢ TCq immediately follows. For il ;s TPu, we must explain
why (=)nT., =~ Sev ®T,, — commutes with the infinite product [],. By arguing as in the proof
of Corollary 3.16 (or just reduction modulo /), we can reduce this to showing that (—),g1
commutes with the infinite product in [, filfjkg HHg(R,/A,). Since the HKR filtration increases

in connectivity, it’s enough to show the same for each graded piece [[, grijxg HH.(]?Ep / Ep).
Since R was assumed to be quasi-lci over A, each graded piece is concentrated in a finite range
of degrees. Thus, in any given homotopical degree, only finitely many cells of CP® ~ BS! will
contribute to (—)g1, so it commutes with the infinite product. O

Finally, we can put everything together.

4.23. Global even filtrations. — Since kuy and kug are discrete, THHg agrees with the
usual THH. We can thus equip THH(kugp ® Q/kuy ® Q) with the solid even filtration, which
agrees with Pstragowski’s perfect even filtration by Theorem 2.9, and with the Hahn—-Raksit—
Wilson filtration by [Pst23, Theorem 7.5] and our assumption that R is quasi-lci over A. We
can now define an even filtration on THH(kug/kua) via the pullback diagram

fily, THH(kup/kuy) fil}, THHa (kuz/kuz)

| - |
fil}, THH(kugp ® Q/kus ® Q) —— fil5, THHg (kufg Q" Q/kuz " Q)
where the right vertical map is given by 4.21 applied to £k = ku and k£ = ku ® Q.
We must explain where the bottom horizontal map comes from. It’s straightforward to
check that fil}, THH(kup ® Q/kus ® Q) ~ filj, HH(R/A) ® Q[S]ev. Moreover, since the base

change result from Corollary 3.17 is still true in the profinite situation (see the discussion in
4.21), we can use base change for Z — Q[A] ~ ku® Q to get

fil, THHa (kuz ®" Q/kuz ®@" Q) =~ fil’, HHa(R/A) ®" Q[S]ev -
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Moreover, the profinite analogue of Corollary 3.21 shows that fil}, HH.(E/ X) agrees with
[, ilfirw-ov HH(R/A);. We then have a canonical map fily, HH(R/A) — fil}, HHa(R/A),
which provides us with the desired bottom horizontal map in the diagram above.

Once we have constructed fil}, THH(kug/kuy), we can also construct filtrations on TC™
and TP in the usual manner:

fl7, 50 TC™ (kup/kua) = (82, THH(kug/kng))"™

Tev
fil}, o1 TP (kup /kua) == (filf, THH(kup/kua)) " .

Here’s a sanity check:

4.24. Lemma. — Suppose we chose condition 3.2(Es) for all primes p, so that kug is an
Es-algebra in kua-modules. Then fil}, THH(kug/kus) agrees with the solid perfect even filtra-

tion on the solid Ey-ring THHg(kug/kuy), and also with Pstrggowski’s perfect even filtration
filp_o, THH(kug/kuy).

Proof sketch. The solid even filtration agrees with Pstragowski’s construction by Theorem 2.9.
To show that both agree with the pullback fily, THH(kug/kua) from 4.23, we verify that all
even filtrations in sight can be computed by cosimplicial resolutions as in Proposition 3.11.
To show this, the proof of said proposition can be adapted in a straightforward way. The
key points are that THHg(Sp) — Sp is still solid faithfully even flat by Lemma 3.12 and that
HH(R/A ®z P*) is still even. O

We’re now ready to construct the global comparison with g-de Rham cohomology. Due to
the problems at p = 2 that we’ve discussed at the end of §4.1, we need a small addendum to
the assumptions from 4.18(R).

4.18a. New assumptions on A and R. — From now on we’ll assume that R satisfies not
only 4.18(R) but also:

(R2) The 2-adic completion Ry satisfies 3.2(Ey).

We note that this is true, in particular, if 2 is invertible in R.

4.25. The global comparison map. — Let us denote ¢-dRg/3 = Hp q¢-dRg, /1, and
dRp/a = Hp dRpg, 4, for short. Then the global ¢-de Rham complex sits inside a pullback

q-dRR/a q-dRg/a

J . |

(dRp/a ® Q)lg — 1] — (dR7/2®% Q)lg — 1]

(see [Wag25, Construction A.14]). We claim that this diagram maps canonically to the pullback

grd, pgt TC™ (kug/kua) 210, g1 TCq (kug/kuz)

J : J

g12, o1 TC™ (kup ® Q/kua ® Q) —— grl, 1 TCy (kug ®@® Q/kuz ®" Q)

coming from 4.23. To construct this map of pullback squares, we need:
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(a) A map ¢-dRp/z — grgv nst TCq (kug/kuz). This we get by taking the product of the
maps w%p from 4.6 for all primes p.

(b) A map (dRr/a ®zQ)[g —1] — grd, TC™ (kur ® Q/kus ® Q). Since kusy ® Q ~ A® Q[A]
and kup ® Q ~ R® Q[f], we get

TC™ (kup ® Q/kus ® Q) ~ HC™ (R® Q[B]/A ®Q[4]) .

A standard computation identifies gr?, with the Hodge completion (dRp / A®Q)/P\Idg lq —1],
so we can choose our desired map to be the Hodge completion map.

() A map (dRg/2®zQ)[g —1] — grg\,’hS1 TCq (kup ®" Q/kuj ®" Q). This works as in (b)
above.

Clearly (b) and (c) are compatible; compatibility of (a) and (¢) will be checked in Lemma 4.29
below. So we get our map of pullback squares and thus a map

Y% q-dRpja — grg\,’hsl TC™ (kug/kuy) .

4.26. The global g-Hodge filtration. — As in the p-complete case 4.7, we identify
1
»o2* 85, ht (k") ~ Z[B][t] with the filtered ring (¢ — 1)*Z[q — 1], where ¢ is the filtration

parameter and [ corresponds to (¢ — 1) in filtration degree 1. We then define the g-Hodge
filtration as the pullback

A1} 4g ¢-dRR/a —— 57 g1l o1 TC™ (kug/kuy)

| - J

q-dRp/a grd, pgt TC™ (kug/kua)

As the name suggests, ﬁlg_Hdg q-dRp/4 is indeed a g-Hodge filtration in the sense of [Wag25,
Definition 3.2].

4.27. Theorem. — Suppose A and R satisfy the assumptions from 4.18 along with the
addendum (Rs). Then the map ¥% from 4.25 induces an equivalence of graded Z[B][t]-modules

ﬁlc*z-Hdg q‘&ﬁR/A — x gr:v,h51 TC™ (kug/kua),

where the left-hand side denotes the completion of the q-Hodge filtration ﬁl;‘,Hdg q-dRpg/4 from
4.26. Moreover, modulo B and after rationalisation, we get equivalences

il tag -AR /4 ®pgypq ZIt] — filfrag ARp 4
fil} g (¢-dRr/a ©7 Q) (Aq_1) — fillfag g1y (ARR/A ®7 Q)[q — 1]

with the usual Hodge filtration and the combined Hodge and (q — 1)-adic filtration, respectively.
Via these equivalences, (R,ﬁl;_Hdg q-dRpg/4) becomes canonically an object in the co-category

AniAlgi{;Hdg from [ Wag25, Definition 3.2].

4.28. Remark. — Fix 2 < n < oo. If for every prime p either 3.2(E;) was chosen or Sg,
admits an E,-algebra structure in Sz -modules, then all equivalences in Theorem 4.27 are
canonically E,_j-monoidal. Indeed, for those primes where Sg, is £, we get [E,_1-monoidality
by carefully tracing through all constructions. For the other primes use Theorem 4.17. It follows
that the pair (R,fil} 4, ¢-dRR/4) is canonically an E,_;-algebra in AniAlgi{;Hdg (compare

[Wag25, 3.50]).
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4.29. Lemma. — The maps from 4.25(a) and (c) fit into a commutative diagram

A 4.25(a) A

(q—dRﬁ/ﬁ ®% Q) (q—l) I (grg\,’hsq TC._ (kuﬁ/ku/j) ®. Q)

J |~
4.25(c)

(@R7/a @5 Qg — 1] “22 @, 0 1C; (R " Ql8)/4 &" Qlf))

(¢—1)

where the left vertical arrow is the usual equivalence for rationalised q-de Rham cohomology
and the right vertical arrow is obtained as explained in 4.23.

Proof. In the following, we’ll assume that 2 is invertible in R. To treat the general case, we
can just split off the factor p = 2 from (Hp q-dRg, /A, ®Ii @) (Aq,l and use Lemma 4.13.(+:6)

We’ll use an adaptation of the argument from the proof of Lemma 4.13. Observe that all
maps in question are equivariant with respect to the Adams action of Z* = Hp Ly, so the
problem boils down to checking that a certain Zx—equivariant map

(R4 ®% Q) — 1] — (dR7/3 ®% Q) yq,la — 1]

is the canonical Hodge completion map.
To see this, consider the element ¢ = (¢p—1(1 +p))p € [, Z), where ¢,—1 € Z; denotes
any primitive (p — 1)%* root of unity. We claim that for any M € D(Z), equipped with the

trivial action of Z*, one has a functorial equivalence
(M} Q)[q— 1"~ ~ (M} Q) @ =~ (M &% Q)

To show the claim, it’ll be enough to show Hfl(z[[q — 1= (¢ — 1)) ~ Z @ (torsion group)
for every n. This H_; agrees with w_; of the spectrum

TT (0™~ em ~ T ()=

p p

The homotopy groups of (kug)w:1 are Zjy in degrees {—1,0} and torsion groups in degrees
> 2p — 3. Since CP™" has a finite even cell decomposition, the torsion groups in positive degrees
will only contribute to 7_; (Hp((kug)wzl)(cpn) for finitely many primes, and so the result will

indeed be of the form Z @ (torsion group). This proves the claim.

To deduce that our map above must be the canonical Hodge completion, we apply
(—)¥=' ®L,—1 Z to get a map dRp 43 ®F Q — (dRp 4 ®F Q)f{dg. By comparison with the
reduction modulo (¢ — 1) and Lemma 4.10 (applied for all primes p), we know that this map
must be the canonical Hodge completion. By applying (— ®b Qg — 1]])(Aq_1) to this map, we
deduce that our original map must be the Hodge completion as well. O

Proof sketch of Theorem 4.27. Using Corolllary 3.21, we see that the base change of our even
filtration fil}, , o1 TC™ (kug/kuy) along kuS" — Zh5" is the Hahn-Raksit—Wilson even filtration

ev
on HC™(R/A). Moreover, it’s clear from the construction in 4.25 and Lemma 4.10 that the
induced map

Vg dRpja — aﬁR/A = gr%RW—ev,hsl HC™(R/A)

(-6 Recall that Lemma 4.13 still works for p = 2 as long as 3.2(E1) was chosen; see the argument in the proof
of Theorem 4.14.
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is the canonical Hodge completion map. Similarly, by the construction in 4.25(b), the rationali-
sation

Vo (dRpa ®% Q)[q — 1] — grd, hg1 TC™ (kug ® Q/kus ® Q)

gets identified with the canonical Hodge completion map. With these two observations, the
proof of Theorem 4.8 can be copied verbatim to show everything but the last claim.

It remains to give (R, fil; yq, ¢-dRg/4) the structure of an object in AniAlgdM8. The
equivalences from conditions (b) and (c) of [Wag25, Definition 3.2] have already been constructed;
the compatibility between them follows directly by comparing the even filtrations on TC™ (kup®
Q/kua®Q) ~ HC™ (R®Q[B]/A®QI[A]) and HC™ (R®Q/A®Q). For condition (c,) of [Wag25,
Definition 3.2], we use Theorem 4.8; the compatibilities come for free via the adelic gluing
constructions in 4.23 and 4.25. O
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§5. Habiro descent via genuine equivariant homotopy theory

We've seen in Theorem 4.27 that the even filtration on TC™ (kug/kuy) gives rise to a g-Hodge
filtration ﬁl;,Hdg q-dRpg/4 in the sense of [Wag25, Definition 3.2]. In particular, this provides
many examples to which [Wag25, Theorem 3.11] can be applied.

The goal of this section is to show that, in the situation at hand, the Habiro descent from that
theorem can also be obtained homotopically. As a straightforward corollary of Theorem 4.27,
one checks that the ¢-Hodge complex associated to ﬁl;ﬁHdg qg-dRpg/4 agrees with

q-Hdgp s ~ grgwhsl TC™ (KUgr/KUy,),

where we put KUy :=KU®S,4 and KU := KU ® Sr. To get the Habiro descent, we’ll show
that for every m € N the action of the cyclic subgroup C,,, € S' on THH(KUg/KU4) can be
made genuine. We'll then construct an even filtration on (THH(KU /KU 4)0m)h(5'/Cm)  The
Habiro-Hodge complex ¢-Hdgg /4 will finally be recovered as the 0 graded piece

1
¢-Hdgp 4 = lim grd, g1 (THH(KUR/KU ) )"/ Cm)

This section is organised as follows: In §§5.1-5.3 we review genuine equivariant homotopy
theory, its special case of cyclonic spectra, and the genuine equivariant structure on ku. In §5.4,
we finally construct the desired even filtrations in the cyclonic setting and prove that they give
rise to the Habiro-Hodge complex from [Wag25, Theorem 3.11].

§5.1. Recollections on genuine equivariant homotopy theory

In this subsection, we briefly review theory of genuine equivariant spectra. We’ll follow the
model-independent treatment of [GM23, Appendix C] and the lecture notes [Hau24].

5.1. Genuine equivariant anima. — Let G be a compact Lie group (of relevance to us
will only be the case of S and its finite cyclic subgroups C,,, C S'). We let Orbg denote the
category whose objects are quotient spaces G/H, where H C G is a closed subgroup, and whose
morphisms are G-equivariant maps. Orbg is canonically topologically enriched; through this
enrichment we view it as an oco-category.

We define the oco-category of G-anima (or G-spaces) as well as its pointed variant as

Ani% .= PSh(Orbg) and Ani¢ = PSh(Orbg)s,

where PSh(—) := Fun((—)°?, Ani) and PSh(—), := Fun((—)°P, Ani,) denote the presheaf co-
category and its pointed variant. The pointwise product or smash product induces symmetric
monoidal structures on Ani® and Ani{ and thus turns them into objects in CAlg(Pr"). We
denote the evaluation at G/H by (—)¥: Ani — Ani and likewise for Ani¢. By construction,
these functors are symmetric monoidal.

5.2. Genuine equivariant spectra. — For every finite-dimensional real G-representation
V', we have a topologically enriched functor Orbcc’f — Top,, sending G/H +— SVH, where SV
denotes the 1-point compactification of the vector space V. This functor defines a pointed
G-anima SV € Anif7 which we call the representation sphere of V. We finally define the
oo-category of genuine G-equivariant spectra

SpY := Ani{ [{(SV)®_1 }V]
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to be the initial Ani$-algebra in Pr" in which all representation spheres SV become ®-invertible.
Explicitly, Sp“ can be written as a colimit in Pr" of a diagram whose objects are copies of Anif
and whose transition maps are of the form SV A —: Ani¥ — Ani¥, where V ranges through
finite-dimensional G-representations; see [GM23, §C.1]. By construction, Sp“ comes with a
symmetric monoidal functor

»%: Ani¢¥ — Sp©

in Prl, which thus admits a lax monoidal right adjoint QF: Sp& — Anif.

We let =V: Sp® — Sp® denote the functor xS V' ® —. By construction, this functor is an
equivalence, and we let £~V denote its inverse. If (—);: Ani — Ani¢ denotes the left adjoint
of the forgetful functor, we also define

SA[-1: AniG ()= .G 2G . o .G
¢[—]: Ani”¥ —= Ani/ — Sp
and we let Sg := Sg[*] be the genuine G-equivariant sphere spectrum.

The oo-category Anif is compactly generated, with a set of compact generators given by
(G/H), for all closed subgroups H C G. The transition maps SV A — preserve compact objects
and Prlj — Pr" preserves colimits. It follows that Sp“ is compactly generated, with a set

of compact generators given by X~V Sg[G/H] for all representation spheres and all closed
subgroups H C G. In fact, we can do slightly better; see Lemma 5.9 below.

5.3. Pullback functors. — Given any morphism ¢: G — K of compact Lie groups, we can
define a functor Orbg — Orbg by sending G/H — K/p(H). By precomposition, we obtain a
symmetric monoidal functor p*: Anif — Ani*G in Pr", which sends representation spheres to
representation spheres and therefore determines a unique symmetric monoidal colimit-preserving
functor

©*: Spf — SpY.
5.4. Lemma. — For every morphism ¢: G — K of compact Lie groups, the following

diagrams commute:

* *

Anif LN Ani¢ Anif < Ani¢
s oeiw
* %

SpK _r SpG SpK _r SpG

Proof sketch. The diagram on the left commutes by construction. To see that the diagram on
the right commutes as well, rewrite the colimits defining Sp® and Sp” as limits in Pr®. It’s
then enough to check that ¢*: Anif — Anig’v intertwines the right adjoints of SV A — and
§#*(V) A — for any finite-dimensional K-representation V. Since p*: Anif — Ani¢ has a left
adjoint ¢y, given by left Kan extension, we may pass to left adjoints and show the equivalent
assertion ¢(S¥*(V) A =) ~ SV A ¢(=). Now in general, for any functor ¢: C — D of small
oo-categories, the adjunction ¢y: PSh(C), = PSh(D), :¢* satisfies the “projection formula”
o1(e*(Y)ANX) ~Y A (X) by abstract nonsense. O

5.5. Lemma. — Let i: H — G be the inclusion of a closed subgroup. Then i*: Sp& — Sp*
preserves all limits and and thus admits a left adjoint i: Sp™ — Sp%.C)  If we also let

(D The functor i1 is usually denoted Indg and called induction.
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IE Anif — Anif denote the left Kan extension functor, then the following diagram commutes:

Anifl 2 Ani¢

*
E?J jzg

SpH i SpG
In particular, iy\Sy ~ Sg|G/H].

Proof sketch. To form Sp”, it’s enough to invert all representation spheres of the form S (V)
in AniZ| where V is a finite-dimensional G-representation. Thus, we can obtain Sp© and Sp”
by colimit diagrams of the same shape in Pr“. Treating them as limit diagrams in Pr® and
noting that the transition maps still commute with i*: Ani¢ — Anif (see the argument in
the proof of Lemma 5.4) shows that ¢* indeed preserves limits. Commutativity of the diagram
follows from the right diagram in Lemma 5.4 by passing to left adjoints. O

5.6. Borel-complete spectra. — The full sub-co-category spanned by G/{1} € Orb®
defines a functor BG — Orb%?. Via precomposition we get a symmetric monoidal functor
Ani¢¥ — AniP%. Since all representation spheres SV € Ani{ become ®-invertible under
220 AniEG — SpPY, we can use the universal property of Sp® to obtain a commutative
diagram

Ani¢ —— AniB¢

ol

SpG Ua SpBG

of symmetric monoidal functors in Pr¥. For a genuine G-equivariant spectrum X, we think of
Ug(X) as the underlying spectrum with its non-genuine G-action, and we’ll often suppress Ug
in the notation. Genuine G-equivariant spectra in the image of the right adjoint

Bg: SpP¢ — sp¢
will be called Borel-complete and we call the functor Bg o Ug Borel completion.
5.7. Lemma. — The functor Bg: SpPY — Sp© is fully faithful.

Proof. Asin Lemma 5.5, one shows that Ug also preserves limits and hence admits a left adjoint
L. It will be enough to show that the unit u: id = Ug o L is an equivalence. Since both Ug
and L preserve all colimits, we only need to check that w is an equivalence on the generator
S[G] of SpB¢.

To see this, note that the forgetful functor SpP® — Sp is conservative. Moreover, it’s
clear from the construction that Sp© — SpP® — Sp equals e*: Sp® — Sp, where e: {1} = G
is the inclusion of the identity element. Since S[G] is the image of S under the left adjoint
of SpBY — Sp, it will thus be enough to check that S — e*eS is an equivalence. Using the
commutative diagram of Lemma 5.5, this reduces to checking that S© — eje* S is an equivalence
in Ani,, which is clear since Kan extension along a fully faithful functor is fully faithful. [

5.8. Genuine fixed points. — For every morphism ¢: G — K of compact Lie groups,
the right adjoint ¢ : Sp® — Sp’ of * is lax symmetric monoidal and still preserves colimits.
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Indeed, since ¢, is an exact functor between compactly generated stable oco-categories, it will
be enough to check that ¢* preserves compact objects, which is clear from the description of
compact generators in 5.2. In the case where ¢ is the projection 7g: G — {1} to the trivial

group, we also denote 7 s by
(—)%:Sp” — Sp
and call this the genuine G-fived points. We have (—)¢ ~ Homg (S, (—)¢) ~ Homg ¢ (S¢, —)
by adjunction, and so (—)¢ is represented by Sg.
If X € Sp® and i: H < G is the inclusion of a closed subgroup, we’ll usually write X7

instead of (i*X)H for brevity. It follows formally that (—)7: Sp® — Sp is represented by
WSy ~ Sg[G/H].

5.9. Lemma. — The oo-category Sp® is compactly generated, with a set of compact generators
given by X7 "Sq|G/H] for alln > 0 and all closed subgroups H C G.

Proof. The following argument is taken from [Hau24, Proposition 2.7]. We use induction
on (dim G, |mo(G)]), ordered lexicographically. Suppose a genuine G-equivariant spectrum X
satisfies Homg o (X7"S¢[G/H], X) ~ 0 for all closed subgroups H and all n > 0. If i: H — G
is the inclusion of any such H, then for any closed subgroup K C H we have

0 ~ Homg ¢ (S¢[G/K], X) ~ Homg ¢ (iSy[H/K], X) ~ Homg u (Sy[H/K],i*(X))

and therefore i*(X) ~ 0 by the inductive hypothesis. As a consequence, we see that
Homg o (27V'S¢[G/H], X) ~ 0 for all proper closed subgroups H C G and all finite-dimensional
G-representations V.

It remains to show Homg ¢ (27VSqg, X) ~ 0 for all V. Let j: Orb.g < Orbg denote the
inclusion of the full sub-oco-category spanned by all objects except the terminal object G/G. Let
AniS® = PSh(Orb.g)«. A straightforward application of the Kan extension formula shows that
the left Kan extension functor ji: Anis® — Ani¢ is fully faithful, with essential image given by
those pointed genuine G-equivariant anima Y™ that satisfy Y& ~ « (i.e. those presheaves that
vanish on G/G € Orbg). Since coﬁb(SVG — SV is of this form, it can be written as a colimit
of (G/H)4 for proper closed subgroups H C G. It follows that cofib(SV°X — SV X) ~ 0,

since it can be written as a colimit of terms of the form
Se[G/H]® X ~iSp®@X ~i)(Sp ®i*(X)) ~0.

By our assumption on X, we also have Homspc (Sg, yVex ) ~ HomSpG(E_”Sg, X) ~ 0, where
n = dim V. We conclude 0 ~ Homg,«(Sc, »WX) ~ Homspc(E*VSg, X), as desired. O

5.10. Lemma. — If G is finite, then the compact objects Sg[G/H] € Sp® are self-dual for
all subgroups H C G. In particular, Sp© is a rigid symmetric monoidal co-category.

Proof sketch. We need to construct a coevaluation 7: S¢ — S¢[G/H] ® S¢[G/H] and an
evaluation ¢: S¢[G/H]| ® Sq[G/H]| — S¢ satisfying the triangle identities. To construct e, we
simply apply £g to the map (G/HxG/H)y — S 0 that sends the diagonal to the non-basepoint
and everything else to the basepoint.

Let us now construct n. Let V := R[G/H]. Equip V with an inner product in such a
way that {0},cq/m is an orthonormal basis. Consider the “diagonal map” V' — V x (G/H),

th

whose o™ component is given by R[G/H| — Ro — Ro x {0}, where the first map is the
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orthogonal projection. This map is G-equivariant and proper, so it induces a G-equivariant map
of one-point compactifications, which takes the form SV — SV A (G/H),. Applying EOGO_V,
we obtain a map tr$;: Sg — Sg[G/H], called the transfer. Let also A: G/H — G/H x G/H
denote the diagonal. We finally define 7 as the composite

o Sg[A]
n: S¢ — S¢|G/H] —— S¢|G/H] ® S¢|G/H] .

The triangle identities can already be verified on the level of genuine G-equivariant anima. [J

5.11. Remark. — For arbitrary compact Lie groups G, it is still true that Sq[G/H] are
dualisable, so that Sp® is still rigid. See e.g. [Hau24, §2.3].

5.12. Genuine vs. homotopy fixed points. — By abuse of notation, let us denote the
composition ofthe functor Ug: Sp& — SpP¢ from 5.6 with the homotopy fixed point functor
(—)"¢: SpPY¢ — Sp also by (—)"“. For any X € Sp® we have

(BeUca(X))® ~ Homg,c (Sa, BaUg (X)) ~ Homg,pe (S, Ug(X)) ~ X"C .

Thus, the natural transformation id = Ug o Bg (Borel-completion) induces a symmetric
monoidal transformation of lax symmetric monoidal functors

()¢ = ()¢

In general, this is far from being an equivalence; in fact, the goal of this whole section is to
explain how the Habiro descent of the g-Hodge complex is accounted for by the failure of
THH(KUR/KU4)¢" — THH(KUg/KU4)"“" to be an equivalence.

5.13. Geometric fixed points. — The functor ¥ o (=)¢: Ani{ — Sp is symmetric
monoidal and inverts all representation spheres. Therefore it induces a symmetric monoidal
functor

(—)*¢: Sp® — Sp

(5.2)

in Prl, called geometric fized points. There always exists a natural transformation

()¢ = ().
One way to construct this would be as the following composite (see [Hau24, §2.2]):
X% ~ Homg ¢ (Sg, X) — Homg, (SE, X*¢) ~ Homg, (S, X*¢) ~ X9,

Just as for genuine fixed points, for every closed subgroup H C G, we also consider the functor
(—)®H . Sp% — Sp, suppressing the pullback Sp® — Sp# in the notation.

5.14. Lemma. — The family of functors {(—)"}gcg in Fun(Sp®, Sp) is jointly conservative.
The same is true for {(—=)*"}pycea.

Proof. Both assertions are classical; see e.g. [Sch18, Proposition 3.3.10] for the case of geometric
fixed points. We’ll give a proof by abstract nonsense, following [Hau24, §§2.2-2.3].

For genuine fixed points, joint conservativity follows immediately from Lemma 5.9. For
geometric fixed points, assume X € Sp satisfies X®H ~ 0 for all H. We wish to show

52) Geometric fixed points are usually denoted ®¢. We chose (—)® to be in line with (—)¢, (=), and (—)*°.
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X ~ 0. Arguing by induction over (dimG, |mo(G)|), we may assume *(X) ~ 0 for all
inclusions i: H — G of proper closed subgroups. As in the proof of Lemma 5.9, this implies
Sq|G/H]® X ~ 0 for all such H.

As in the proof of Lemma 5.9, let now j: Orb.g — Orbg denote the inclusion of the
full sub-co-category spanned by all objects except G/G and put Ani<¢ := PSh(Orb¢). Let
5: {G/G} — Orbg denote the complementary inclusion. Let ji: Ani<? = Ani® :j* be the
adjunction given by left Kan extension/restriction along j and let s*: Anifv = Ani, :s, be
the adjunction given by restriction/right Kan extension along s. We denote EP¢g = jij*(*)
and EPg = 5,550 (in the classical setup this has intrinsic meaning; for us it’s just notation).
Then the Kan extension formula shows that

SO i H=@G
« fHCG '

0 iftH=G

E LN
(EPa) L if HCG

and (EPg)f ~ {

Thus the canonical sequence (EPg)y — SO — EPG induced by the universal property of Kan
extension is a cofibre sequence in Ani$. It follows that S¢[EPg] — Sq¢ — EOGO(EP(;) is a cofibre
sequence in SpY, respectively. We have Sq[EPg] ® X ~ 0 as Sg[EP¢] is contained in the full
sub-oo-category generated under colimits by S¢[G/H] for proper closed subgroups H C G. It
will thus be enough to show EOGO(Epg) ® X ~ 0. Since (—)® is symmetric monoidal, we still
have (E%O(EPG) ® X)®H ~ 0 and so the inductive hypothesis shows (EOGO(EPG) ® X)H ~ 0 for
all proper closed subgroups H C G. It remains to show (Z?(EP@) ® X)¢ ~ 0, which follows
from the assumption X®¢ ~ 0 using Lemma 5.15 below. O

5.15. Lemma. — With notation as above, for any X € Sp® there is a functorial equivalence
(53 (EPs) @ X)¢ = X6

Proof. Let us first construct the functorial map. With notation as in the proof of Lemma 5.14
above, we have Sg[EPg]?? ~ S[(EP¢)%] ~ 0. Thus, if we apply the natural transformation
(—)% = (—)®% to the cofibre sequence Sg[EP;]® X — S¢® X — E%O(Epg) ® X, it will
induce the desired map.

Let us now verify that this map is an equivalence. Since (—) and (—)® preserve colimits,
it’s enough to check the case X ~ Sg[G/H]. For proper subgroups H C G we have (G/H)% ~ «
and so Sg[G/H]?% ~ 0 as well as

25 (EPq) ©SalG/H] ~ £F (EP A (G/H)+) ~ 5F (x) ~ 0.

It remains to show that Eg?(EPG)G — SgG ~ S is an equivalence. This can be checked on
underlying anima. Using the definition of Sp® as a colimit, we see

0> (ZOGO(EPG)G) ~ 0> Homg c (Se, EOGO(EPG» ~ cglgian Map 5 i (SV’ SV A EPG> ,

where U is a complete G-universe, that is, a direct sum of countably many copies of each
irreducible G-representation, and V' ranges through all finite-dimensional subrepresentations of
U. Now recall that E}PG ~ 5,5*8%. Using the Kan extension formula, it’s straightforward to
check SV A s,5%80 ~ S*SVG and so the colimit above can be rewritten as desired:

. \V4 %S . vG 4VC@
c‘(/)lglanMapAmg (S , 8485 ) ~ c‘glglzr}lMapAni* (S ,S ) ~ O°S. O
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Using a similar argument, we can also show the following assertion:

5.16. Lemma. — Let G be finite. For a genuine G-equivariant spectrum X, the following
are equivalent:

(a) For all subgroups H C G, the genuine fized points X are bounded below.
(b)  For all subgroups H C G, the geometric fized points X®! are bounded below.

Proof. Via induction on |G/, it will be enough to show under the hypothesis that X is bounded
below for all proper subgroups H C G, the genuine fixed points X are bounded below if and
only if the geometric fixed points X ®¢ are bounded below. Using Lemma 5.15 and the proof of
Lemma 5.14, we find a cofibre sequence (Sg[EPg] ® X)¢ — X& — X®&. Moreover, Sg[EP¢]
can be written as a colimit of S¢[G/H] for proper subgroups H C G. Thus, it will be enough
to show that each (S¢[G/H]® X)© is bounded below (here we use finiteness of G' to ensure
that there are only finitely many H). This follows from

(S¢[G/H] ®X)G ~ Homg ¢ (S¢, Se[G/H] ® X) ~ Homg ¢ (Sc[G/H], X) ~ X",
where we use self-duality of S¢[G/H] (Lemma 5.10) O

5.17. Inflation maps. — Given any morphism ¢: G — K of compact Lie groups, one has a
symmetric monoidal natural transformation of lax symmetric monoidal functors

inf,: (=) = (p*(—)°

Indeed, from 5.8 we see that (—)¢ ~ (—)¥ o ¢, and then the desired natural transformation
arises by postcomposing the unit transformation id = @, o ¢* with (—)K .

If ¢ is injective, the transformation above is called restriction and denoted resIG( . We're
instead interested in the case where ¢ is surjective, where it is customary to call these maps
inflations. In the surjective case, there’s also a symmetric monoidal inflation

inf,: (=) = (p*(-)"".

Indeed, on the level of genuine equivariant pointed anima, the pullback ¢™*: Anif — Anif
satisfies (—)% ~ (¢*(—))¢ (this needs surjectivity, so that evaluation at K/K € Orb}’ agrees
with evaluation at K/¢(G)) and then the desired inflation transformation is induced by the
universal property of Sp¥ as an Anif -algebra in Pr. It’s straightforward to check that for all
X € Sp’ the diagram

inf,

XE —2 (¢*X)“

| l

XK inf, (go*X)‘DG

commutes functorially in X, where the horizontal maps are the inflations and the vertical maps
are the ones from 5.13.

5.18. Residual actions. — Let i: N — G be the inclusion of a normal subgroup, let
m: G — G/N denotes the canonical projection and let e: {1} — G/N the inclusion of the
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identity element. Then the diagram

SpG T SpG’/N

| E

_\N
spv I SOANR Sp

commutes. Indeed, commutativity can be checked after passing to left adjoints, and then it
follows from 7*e/S ~ 1*S¢/n[G/N] ~ Sg[G/N] ~ i)Sy, using the diagram from 5.8 to compute
the values of 7, and e.

In particular, for any X € Sp®, the genuine fixed points XV can be equipped with a residual

genuine G/N-action. In a similar way, one can equip X N with a residual genuine G /N-action,
and it can be checked that X~ — X%V is genuine G /N-equivariant.

5.19. Lemma. — With the residual actions from 5.18, for all X € Sp® we have canonical

equivalences
XG ~ (XN)G/N and X‘PG ~ (X‘@N)CID(G/N) )

Proof. 1f ng: G — {1} and mg/n: G/N — {1} denote the canonical projections, then clearly
TG~ oms, N Since adjoints compose, the equivalence for genuine fixed points follows. To
see the equivalence for geometric fixed points, it’s enough to check the case X ~ Sg[Y] for YV a
genuine G-equivariant anima; this case follows from Y& ~ (YN )G/ N, O

§5.2. The oo-category of cyclonic spectra

After reviewing the general framework of genuine equivariant homotopy theory, from now on
we’ll restrict to the following special case:

5.20. Cyclonic spectra. — In the following, we’ll consider spectra with an S'-action that
is genuine with respect to all finite cyclic subgroups C,, € S'. These were introduced under
the name cyclonic spectra by Barwick and Glasman [BG16].

While the original construction uses spectral Mackey functors, we’ll follow [AMR17, No-
tation 2.3(3)] and construct co-category of cyclonic spectra as the full stable sub-oo-category
CycnSp C Sp° ' generated under colimits by ¥ 7"S¢1[S'/C,,] for all finite cyclic subgroups
C,, €St and alln > 0.

5.21. Lemma. — The family of functors {(—)°"}men in Fun(CycnSp, Sp) is jointly conser-
vative. The same is true for {(—)®°"},en.

Proof. For genuine fixed points this follows since {$7"Sg1[S!/Cpm]}men.nzo is a system of
generators for CycnSp by construction. The assertion about geometric fixed points then follows

from Lemma 5.14. U
5.22. Illemma. — The fully faithful inclusion j: CycnSp — SpS1 admits a right adjoint
§*: Sp™ — CycenSp with the following properties:

(a) j* still preserves all colimits.

(b)  The counit transformation c: jioj* = id is an equivalence after applying (—)m or (—)®m
for any finite cyclic subgroup C,, C S*.
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(¢) Forall XY € SpS’ the canonical map
X ®4TY) = (X ®Y)

s an equivalence. Thus, there’s a canonical way to equip CycnSp and j*: Sps1 — CycnSp
with symmetric monoidal structures.

Proof. The right adjoint j* exists since j; preserves all colimits. Since CycnSp is compactly
generated and ji preserves compact objects, j* preserves filtered colimits and thus all colimits
by exactness, proving (a). By construction,

HomSpsl (851 [Sl/Cn],j!j*X) ~ Homspsl (SSI [Sl/Cm]7 X)

and so (jij*X)" — X% is indeed an equivalence. Since this is true for all divisors d | m,
Lemma 5.14 shows that (jj*X)®¢n — X®Um i an equivalence as well. This shows (b).
Whether j*(X ® jij*Y) — j*(X ®Y) is an equivalence can be checked on geometric fixed
points by Lemma 5.21. But after applying (ji(—))®“™, both sides become X ®¢m @ Y ®Cm by
(b) and symmetric monoidality of (—)®m. This shows the first claim in (c); the second claim is
general abstract nonsense about localisations of symmetric monoidal co-categories (see [L-HA,
Proposition 2.2.1.9] for example). O

In the following, we’ll usually suppress ji and j* in the notation.

5.23. Lemma. — For m,n € N, let us identify Cpn/Cp = Cp, Ciin/Cr = Chy. For all
cyclonic spectra X, the residual actions from 5.18 satisfy the following functorial identites:

(a) (XCm)Cn ~ XCm", (X<I>Cm)<1>0n ~ X(I’Cmn7 and (XhCm)hCn ~ XhCmn
(b) If m and n are coprime, then (Xm)®Cn ~ (XPCn)COm,

Proof. The first two assertions from (a) are special cases of Lemma 5.19, the third assertion
is classical. For (b), let us first note that Orb¢, , ~ Orbe,, x Orbc,, which easily implies
Spc,,, =~ Spc,, ® Spe,, for the Lurie tensor product. By construction of geometric fixed points
it’s clear that (—)®": Sp, ® Spe, — Sp¢,, is given by applying (—)®“": Sp, — Sp in the
second tensor factor. If we can show a similar assertion for (=)™, we’ll be done.

To this end, let 7: Cp,y, — Cy, and 7, : Cp, — {1} denote the canonical projections. It
is again clear from the construction that 7*: Spy, — Sps  ® Spg, is given by applying
me, tSp — Spg,, in the first tensor factor. Its right adjoint 7, must then also be given by
applying the right adjoint m¢,, » (which is also a functor in Pr") in the first tensor factor,
because we can just apply — ® Spg,, to the unit, the counit, and the triangle identities. ]

Nikolaus—Scholze [NS18, Theorem I1.6.9] showed that on bounded below objects, the
structure of a cyclotomic spectrum is equivalent to a “naive” notion, in which one only asks for
S1-equivariant maps X — X*¢». We’ll now show a similar result in the cyclonic case. This is
based on the following well-known fact (see e.g. [HM97] or [NS18, Lemma I1.4.5]):

5.24. Lemma. — There’s a pullback square of symmetric monoidal transformations between
lax symmetric monoidal functors in Fun(SpCP, Sp)

()% L2 ()%

(5.12)M 1 M

()1 — (=)
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Proof. 1f we regard the orbit C,/C; as a genuine Cp-equivariant anima via the Yoneda em-
bedding, we find (C,/C1)®? ~ () and (C,/C1)“" ~ C,. By direct inspection, it follows that
EPc, ~ (Cp/C1)nc,, where C, acts on C,/C1 in the obvious way.

For every genuine Cj-equivariant spectrum X, we've seen in Lemma 5.15 that the fibre
of X% — X*%% is given by (S¢,[EP¢,] ® X)“». Using that (—) preserves all colimits and
Sc, [Cyp] is self-dual by Lemma 5.10, we find

(S, [EPo,1© X) " = (Sc, [Colne, ® X) ~ ((Se, [Cy] © X)), ~ Xnc, -

In the case where X is Borel-complete, it’s straightforward to check that the induced map
Xne, — X ~ X" ig the norm map and so X®¢ ~ X'C» for Borel-complete X. In general,
composing the Borel completion transformation id = B¢, Uc, with the natural trasformation
(=) = (=)®C%, we obtain the desired commutative square. It is a pullback square since the
row-wise fibres are given by (—)xc,, as we’ve just verified. Symmetric monoidality is also clear
from the construction. O

5.25. Naive cyclonic spectra — Informally, a naive cyclonic spectrum should consist of
a collection of spectra (Y;;)men, each Y, equipped with an (S!'/C,,)-action, together with
(S'/Cpm)-equivariant maps ¢p m: Ypm — Y, for all m and all primes p. The intuition is
that Y, ~ X® records the geometric fixed points of some cyclonic spectrum X. To see
obtain the maps ¢y, : X®Cpm _, (Xq’cm)tcp in this case, we plug X®“ into the natural
transformation (—)®% = (—)!»; by naturality, the map ¢, , that we obtain is (non-genuinely)
(S'/Cpm)-equivariant.

Formally, we define the co-category of naive cyclonic spectra to be the lax equaliser (in the
sense of [NS18, Definition II.1.4])

CycnSp"@V = LEq< I sp™e/em) T NIERS /cpm>>

meN M p meN

where p runs through all primes, the top functor is given by (Yin)m — (Ypm)p,m, and the bottom

functor is given by (Y;,)m — (Y%Cp)p,m. By the universal property of lax equalisers there is a
functor

naiv

(—)?¢: CyenSp — CycnSp

which sends X +— (X®9m),,cn, equipped with the canonical maps ¢y, : X Crm — (X 2Cm)iCs
described above. Using Lemma 5.27 below, we can also equip CycnSp"®" with a symmetric
monoidal structure in such a way that (— )‘I’C is symmetric monoidal.

Let us also call a cyclonic spectrum X bounded below if each X®™ is bounded below (not
necessarily with a uniform bound for all m); equivalently by Lemma 5.16, all X *“™ are bounded
below. Similarly, a naive cyclonic spectrum Y = ((Yi,)m, (¢p,m)p,m) Will be called bounded
below if each Y, is bounded below (not necessarily with a uniform bound). We denote by
CycnSp, and CycmSpnalv the respective full sub-oo-categories of bounded below objects.

5.26. Proposition. — When restricted to the respective full sub-oo-categories of bounded
below objects, the functor (—)q’c becomes a symmetric monoidal equivalence

naiv

(=)®C": CyenSp + — CycnSp¥

To prove Proposition 5.26, let us first construct the desired symmetric monoidal structure.
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5.27. Lemma. — Let F': C — D be a symmetric monoidal functor and let G: C — D be a
lax symmetric monoidal functor of symmetric monoidal co-categories. Let F® and G® denote
the corresponding functors between the co-operads C® — Finy, and D® — Fin, and define

LEq(F, G)® := LEq(F®,G®) X1y ) Fin,, .

idFin* aidFin*

(a) LEq(F,G)® — Fin, is an oo-operad associated to a symmetric monoidal structure on the
oo-category LEq(F, G) and LEq(F,G) — C is symmetric monoidal.

(b) IfC and D are presentably symmetric monoidal, F' preserves colimits, and G is accessible,
then LEq(F, G) is again presentably monoidal.

Proof sketch. Let (i) € Fin,. Using LEq(idy)y,id(yy) = *, the fact that lax equalisers commute
with pullbacks, and the fact that the fibres over F® and G® over (i) are F': C* — D' and
G': C' — D' respectively, we find that the fibre of LEq(F, G)® — Fin, over (i) € Fin, is of the
desired form:

LEQ(F®, G®) X Lq(idpiny idem, ) LEA(id(()y, idg@y) ~ LEQ(F', G") ~ LEq(F, G)'.

Let us next check that LEq(F,G)® — Fin, is a cocartesian fibration. For simplicity, we’ll
only describe locally cocartesian lifts of the unique active morphism fo: (2) — (1); it will
be obvious how to perform the construction in general, as will be the fact that the lo-
cally cocartesian lifts compose, so that we obtain a cocartesian fibration by the dual of
[L-HTT, Proposition 2.4.2.8]. So suppose we're given ((z1, 1), (z2,v2)) € LEq(F, G)?, where
v1: F(x1) — G(21) and ¢a: F(z2) — G(z2). Let ¢ denote the composite

o F(z1 ®c 22) ~ F(x1) ®p Flwa) 2222 G(a1) @p G(z2) — Gla1 ®c w2) ,

where we use strict and lax symmetric monoidality of F' and G, respectively. Now let
p: (z1,72) — 1 ®c T2 be a locally cocartesian lift of fo along C® — Fin,. Moreover, let
pr = FO(u): (F(21), F(r2)) — F(21) ®p F(r2) and pg: (G(x1), G(x2)) — G(a1) ®p G(a2)
be locally cocartesian lifts of fo along D® — Fin,. We have ¢ o up ~ ug o (1, 92) by con-
struction of ¢, and so we obtain a morphism ((z1, ¢1), (22, p2)) — (71 ®¢ 72, ¢) in LEq(F, G)®.
Using the formula for mapping anima in lax equalisers from [NS18, Proposition I1.1.5(ii)] and
the general criterion from the dual of [L-HTT, Proposition 2.4.4.3], it’s straightforward to
verify that this morphism is indeed a locally cocartesian lift of fo, as desired.

Therefore, LEq(F,G)® — Fin, is indeed a cocartesian fibration. From the description
of cocartesian lifts above, it’s clear that LEq(F, G)® — C® preserves cocartesian lifts, hence
LEq(F,G) — C is indeed symmetric monoidal. This finishes the proof sketch of (a).

For (b), we must check that LEq(F, G) is presentable and that the tensor product preserves
colimits in either variable. Both assertions follow from [NS18, Proposition II.1.5(iv)—(v)]. O

Let us now commence with the proof of Proposition 5.26. The main ingredient is a formula
that allows to compute genuine fixed points for finite cyclic groups in terms of homotopy fixed
points, geometric fixed points, and the Tate construction.

5.28. Lemma. — Let X be a cyclonic spectrum and let m € N. If the geometric fixed points
X®Ca gre bounded below for all divisors d | m, then the following canonical (S*/Chy,)-equivariant
map is an equivalence:

XOm =, eq(H(X‘pCd)hcm/d g H H ((X‘I)Cd)tcp)hcm/pd> )

dlm ¢ p pdm
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Here the second product is taken over all primes p. The two maps can and ¢ in the equaliser
are given as follows:

(XCDCd)hCm/d ~ ((X<I>Cd)h0p)hcm/pd N ((XCDC’d)th)hCm/pd ’

(X<I>de)hcm/pd ~ ((X@Cd)fbcp)hcm/pd N ((X<I>Cd)tcp)hcm/pd ,

using the natural transformations (—)"“r = (=)' and (=)®% = (=)', respectively.

Proof. We use induction on m. If m = p® is a prime power, the assertion is [NS18, Corol-
lary 11.4.7]. Now let m be arbitrary. We may assume that all but one prime factors of m act
invertibly on X, because an arbitrary X can be written as a finite Cech limit of such objects
(also the assumption that all X ®Ca are bounded below is preserved under any localisation).
Write m = p“m,, where p is the not necessarily invertible prime and m,, is coprime to p.
Using the inductive hypothesis and the fact that the Tate construction (—)tC‘Z vanishes on
S[1/¢]-modules, we find
XCmp o T (x®Car)" st

dp|myp

Also observe that all homotopy fixed points mp/dp in this formula can be computed as
finite limits, as BC), 4, has a finite cell structure once m,, is invertible. An argument as
in Lemma 5.23(b) then allows us to deduce that the formula above is also true as genuine
Cpa-equivariant spectra and that the homotopy fixed points (—)hc

(_)hC

mp/dp commute with the
geometric fixed points (—)q)cp". With these observations, the formula for X©m ~ (X mp)Cpe
becomes precisely the desired equaliser. O

With a similar argument, one can show the following technical lemma.

5.29. Lemma. — Let Y = (Yon)m, (¢p,m)p,m) be a naive cyclotomic spectrum. Then'Y is
bounded below if and only if for all m € N the following equaliser is bounded below:

eq (H Ydhcm/d g H H (Y;cp)hcm/pd> _

dlm ¢ p pdm

Proof. We only prove the “only if” part, the “if” will follow from Proposition 5.26 (and won’t
be used in the proof). So let Y be bounded below. We may once again assume that all but one
prime factors of m act invertibly on Y, since the property of being bounded below is preserved
under finite Cech limits. So write m = p“mp, where p is the not necessarily invertible prime
and my, is coprime to p. Since the Tate constructions (—)!¢ vanish for all primes p # ¢, the

e <H Ydhcm/d g H (Y;cp)hcm /pd>

dm bp pdlm

equaliser simplifies to

Let pd | m and write d = p'd,, where i < a — 1 and d,, is coprime to p. Using the Tate fixed

point lemma [NS18, Lemma I1.4.1], we find
hCh, Cp\hC,, hC,,
ﬁb(Yd /4 (Y; p) /pd) ~ ((Yd)tha,i) /pdp

Since (_)hCPCH- preserves bounded below objects and (—)"“m/»*4 can be written as a finite
limit in our situation, we deduce that the fibre is bounded below. An easy induction shows

that the equaliser in question must be bounded below as well. O
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Proof of Proposition 5.26. Let us first show that (—)®: CyenSp, — CycnSpﬂ‘fiV is fully faith-
ful. For any m € N, we have

S[SY/Cppjal if d|m

0 else

Sg1[S!/Cpn]*C1 = {

By unravelling the general formula for mapping anima/spectra in lax equalisers [NS18, Proposi-
tion I1.1.5(ii)], we find that Homg,. g naiv (Sg1[S 1/Cn]2¢, X ®C) is given by the equaliser from
Lemma 5.28 for all cyclonic spectra X. If X is bounded below, it follows that

Hom o omaiv (Sg1[S1/Cn]*9, XPC) ~ X9 ~ Homeyensp (Ss1[S"/Cim]. X)

as desired. Since CycnSp is generated under colimits by shifts of Sg1[S'/C),] for all m € N, we
deduce that (—)®¢: CycnSp, — CyenSpi™Y is indeed fully faithful.

Using [NS18, Proposition I1.1.5(iv)—(v)], we see that (—)®¢: CycnSp — CycnSp™™" is a
colimit-preserving functor between presentable co-categories and so it admits a right adjoint
R: CyenSp™™V — CycnSp. We note that R restricts to a functor R: CycnSpﬂ‘f‘iV — CycnSp, .
Indeed, an analogous computation as above shows that

R(Y)® = Homgyegpnans (St [S"/C] "9, Y) > eq (H v, =TT (Y;Cp)hcm/pd>

dlm ¢ p pdm

for all Y € CycnSp™V. Thus, if Y is bounded below, Lemma 5.29 shows that R(Y") will be
bounded below as well.

The same calculation shows that R is conservative. Indeed, if Y — Y is a morphism of
naive cyclonic spectra such that R(Y) — R(Y”) is an equivalence, then the induced morphisms
on the equalisers from Lemma 5.29 are equivalences for all m € N. Arguing inductively, this
implies that Y;, — Y/, must be an equivalence for all m € N and so Y — Y’ is indeed an
equivalence as well.

In general, if the left adjoint in any adjunction is fully faithful and the right adjoint is
conservative, the adjunction is a pair of inverse equivalences. This finishes the proof. ]

5.30. Remark. — Ayala—Mazel-Gee—Rozenblyum derive another “naive” description of
cyclonic spectra in [AMR17, Corollary 0.4]. In contrast to Proposition 5.26, which is only
valid in the bounded below case, their result covers all cyclonic spectra. This comes at a cost
of additional coherence data. The moral reason why, in the bounded below case, we can get
away with only the maps X®Crm — (X (I’Cm)tcp, with no coherence data to be specified, is the
following: For X bounded below, the composition maps for the proper Tate construction are

equivalences
XTC’mn =~ (XTCm)TCn ,

and unless m and n are powers of the same prime, both sides vanish. This determines all
coherence data uniquely. We expect that by formalising this observation, one can deduce
Proposition 5.26 from [AMR17, Corollary 0.4], but we have not attempted to do so.

5.31. Cyclonic vs. cyclotomic spectra. — Let CyctSp denote the co-category of cyclo-
tomic spectra and let CyctSp™*" denote its naive variant introduced by Nikolaus—Scholze [NS18,
Definition II.1.6(i)]. We have a symmetric monoidal functor

naiv

CyctSp™™Y — CycnSp
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sending a cyclotomic spectrum X to the constant family ((X)m, (¢p,m)p,m) in which each ¢, ,,
is given by the cyclotomic Frobenius X — X‘r. This functor is not fully faithful (this will
become useful in 5.43 below).

One can also construct a functor CyctSp — CycnSp on the non-naive co-categories (see
[AMRI17, §2.5] for example) which agrees with the functor above on bounded below objects.

§5.3. Genuine equivariant ku

In this subsection we’ll equip ku with the structure of a cyclonic spectrum and compute its
genuine and geometric fixed points ku® and ku®“™ for all m.

5.32. Cyclonic ku. — Recall that Schwede [Sch18, Construction 6.3.9] constructs a model
kug of ku as an ultracommutative global®3) ring spectrum. Throwing away most of the structure,
this yields an Ey-algebra kug: € CAlg(Spg1) with underlying non-equivariant E..-algebra ku.
We still have a Bott map : $2Sg1 — kug:i (in fact, 3 already exists for kug) and we define
KUg: = kugi[37!]. In the following we’ll often abusingly drop the index and just write ku
or KU for the genuine S'-equivariant versions. We also note that by restriction, ku and KU
define E.-algebras in cyclonic spectra.

5.33. Genuine fixed points of ku. — Let ¢ denote the standard representation of S*
on C via rotations, so that the complex representation rings of S' and C,, are given by
RU(S') = Z[¢*'] and RU(C,,) = Z[q]/(¢™ — 1). Via the canonical map RU(S!) — ﬂo(kusl),
we can regard ¢ as a class in Wo(kus 1), compatible with Remark 4.3. It’s a well-known fact
that ¢ is a strict element, that is, it is detected by an E,-algebra map S[q] — ku'. See
Corollary C.2 for a proof.

For the finite groups Cp, the analogous maps RU(C,,) — mo(ku®™) are isomorphisms [Sch18,
Theorem 6.3.33] and so, by equivariant Bott periodicity,

me(ku") = Z[B,q]/(¢™ —1) and m(KU9") = Z[5* q]/(¢" — 1).

In particular, ku®™ ~ T>0(KUC7"). Using the homotopy fixed point spectral sequence, we can
also compute the homotopy fixed points of the residual (S!/C,,)-action:

o (kO )MEOm)) = 78, g [t / (Bt — (@™ — 1)) ,

where |t,,| = —2. The canonical map (ku®m)a(S"/Cm) _ k"o " sends t,, — [m]gt. In particular,
on mp this map recovers the (¢ — 1)-completion Z[q] (Aqm,l) — Zlq—1], and t,,, = [m]xu(t) agrees
with the m-series of the formal group law of ku.

5.34. Inflation maps for ku. — Consider the inflation maps from 5.17 in the special case
where ¢ is the n'" power map (—)": S' — S for some n > 1. We have p*kug: ~ kug:, since
the genuine S'-equivariant structure comes from a global spectrum kug), where all actions are
trivial (compare [Sch18, §4.1]). Since (=)™ maps the subgroups Ci,, to C,,, we get inflations

inf,, : ku¢m — ku®m  and inf,, : ku®¢m — ku®Cmn

These are maps of E..-algebras in Spgi for the residual genuine S' ~ S!/C,,-equivariant
structure on the left-hand sides and the residual S' ~ S 1/ Cinn-equivariant structure on the
right-hand sides. A straightforward check shows inf,(¢) = ¢" and inf,(5) = 8 (compare C.3).

(5:3)«Global” in the sense of global homotopy theory, not in the sense of §4.4. Very roughly, it means to have
compatible trivial actions by all compact Lie groups. “Ultracommutative” refers to the fact that Schwede’s
model admits a strictly commutative multiplication on the point-set level.
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5.35. Corollary. — For all m and n, the inflation map induces an S*-equivariant equivalence
of Exo-algebras

inf, : ku®m ®s[q],¢n Sla] — ku®mn |

where Y™ : S[q] — S[q] is given by ¥"(q) = q".
Proof. This can be checked on homotopy groups, where it follows from 5.33 and 5.34. O

5.36. Remark. — The notation ™ : S[q] — S[g] is chosen to be compatible with the Adams
operations on the A-ring Z[¢]. One can also construct equivariant Adams operations on ku (see
C.5), but these do not coincide with inf,,.

5.37. Geometric fixed points of ku. — To prove our Habiro descent result, it will be
crucial to know the geometric fixed points ku®m as well, at least after inverting m and after
p-completion for any prime p | m. This will be our goal for the rest of this subsection. Our
strategy will be to compute the geometric fixed points inductively using Lemma 5.28. To
apply said lemma, observe that we already know that each ku®“™ is bounded below thanks to
Lemma 5.16.

For KU, the geometric fixed points can essentially already be found in the literature (even
though the author could only find the precise result in the case where m is a prime power): We
have an equivalence of S'-equivariant E,.-ring spectra

KU [{(a” = 1) g o] — KU

One way to prove this is via the corresponding statement for equivariant MU [Sin01, Proposi-
tion 4.6] and the equivariant Conner—Floyd theorem [Cos87]. The result can also be deduced
from Proposition 5.42 below.

5.38. Lemma. — The canonical map ku[l/m]%m — ku[1/m]®“m induces an equivalence of
St-equivariant Eoo-ring spectra

(k[ 517")5, ) — kul

PCh,
@.,(q) ] ’

1
m
In particular, 7. (ku[1/m]®“m) = Z[1/m, B, q]/®m(q).
Proof. Since we already know that ku® is bounded below for all d | m, we can apply the
formula from Lemma 5.28 to ku[1/m]. Because we’ve inverted m, all Tate constructions will
vanish, and the formula becomes an equivalence

i 4] ~ [ en[ 1]

dlm
The claim then follows via induction on m and Corollary 5.35. O
5.39. Lemma. — Let m = p“m,, where p is a prime and m,, is coprime to p. The inflation

map induces an S*-equivariant equivalence of Eoo-ring spectra
AN

iﬂfmp : ((kutbCpa ); ®s[q],wme S[q]) B0l — (ku‘i‘cm)
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Proof. Note that m,, is invertible on (ku®“»*);. The same argument as in the proof of
Lemma 5.38 shows that the canonical map

((kuq)cpa )I’;)Cmp ~ ((kuq)cpa )C’"P); N ((kuq>cpa)q)c’”?); ~ (kuq>0m);

exhibits the target as the (p, ®,,(q))-completion of the source. It remains to show that inflation
induces an equivalence (ku®%* )  ®spy1 ymr S[a] ~ ((ku®“»*)“mr)}. As both sides are p-complete,
this can be checked modulo p. Moreover, note that with geometric fixed points replaced by
genuine fixed points, this would follow from Corollary 5.35. In fact, applying Corollary 5.35 to
ku%e for all i < a, we deduce that

nf,,, : ku/p ®siq),vmr S[q] — (ku/p)cmp

is an equivalence of genuine Cpe-equivariant spectra, as it induces equivalences on genuine fixed
points for all subgroups (see 5.8). Then it must induce equivalences on geometric fixed points
as well, which proves what we want. ]

5.40. Lemma. — For all primes p and all a > 1, the following assertions are true.

Cpa

(a) The canonical map ku — (kuq)cp" D% induces an S'-equivariant equivalence of

E-ring spectra
(leu®%) " = 7o ((ku®ret )1 |

(b)  On homotopy groups, we have m4((ku®“r*)p) = Z,[upa, q]/®pa(q) where |upe| = 2, and

o (0™ ) "V = 7 g, ) [ty (gt — B ()

With notation as in 5.33, the canonical map (kuCr®)H(S"/Coe) — ((ku®Cre)p)S"/Cpe)
sends q — q, tpo — tyo, and B — (qp%1 — Dupe.
(¢) The inflation map induces an equivalence of S'-equivariant Eu-ring spectra
- . ®C, N BCha \ A
infe1: (ku ? ®gpg, et S[q])p — (ku 4 )p

Proof. We show all three assertions at once using induction on «. In general, using Lemma 5.28,
or more directly the iterated pullback diagram from [NS18, Corollary I1.4.7], we obtain a
pullback square

kucpa kuCI)Cpa
Lo
(kuCpafl )th (kuq)cpafl )th
For a = 1, we see that ku®> — ku"“? induces an equivalence (ku®); =~ 750 (ku“?);, and
(kuhcp)g — ku!“? is an equivalence in homotopical degrees < —1. From the pullback square we
deduce that (ku®®?); ~ 75 (ku'“?), proving (a). Assertion (b) for a = 1 is then a standard

calculation; see [DR25, Proposition 3.3.1] for example. Assertion (c) is tautological for o = 1.
For the inductive step, let a > 2. We claim that

T (kucp") =y, (kucp) R Zlq],
T ((kucpa—l )hcp) T (kuhcp) ®Z[q],’lﬁpail Z[q] s
i (ku®Co 1)) 2= o (ku'P) @) pe1 Zlg]

[l

[12
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Indeed, the first two isomorphism follow from Corollary 5.35 and the third one from (b) for

ku®“»~1 which we already know by induction. Then (b) and (¢) follow immediately from the

hC induces

pullback square above. Moreover, we see that the vertical map ku®* — (kuCP”"l)
an equivalence (ku®® ), ~ 750 ((ku®*~")"C»)7 and that after p-completion the horizontal map
((ku»=1)rC) 5 — (ku®@~1)C is an equivalence in homotopical degrees < —1. As in the

case o = 1, this implies (a). O

5.41. Remark. — Let p > 2, so that THH(Z,[(,]/Splg — 1])p =~ T=0(ku'“?) holds as S'-
equivariant E.o-ring spectra by Theorem 4.1. As a consequence of Lemma 5.40(a), we get an

equivalence

THH(Z,[G)/Splla — 1), =~ (ku®r)?

of S'-equivariant E.-ring spectra.

But we can say even more. Devalapurkar shows in [Dev25, Theorem 6.4.1] that the
equivalence THH(Z,[¢]/Spla — 1])p =~ 7s0(ku‘“?) holds as cyclotomic Eoo-ring spectra, where
750(kut®?) is equipped with the cyclotomic structure induced from the trivial cyclotomic
structure on ku (see [DR25, Construction 1.1.3]). Since the inflation maps for ku are similarly
induced via the trivial S'-action on the global ultracommutative ring spectrum kugj, we see
that the cyclotomic Frobenius

Gp: T>0 (kutcp) — (T>O(kutcp))t0p

agrees, up to passing to the connective cover in the target, with inf,: (ku®“r), — (ku®%r)7,

as maps of S'-equivariant E,.-ring spectra. Therefore we obtain a commutative diagram
SO\ A inf,, dC A
(ku p)p Qsq],y» Slal (ku v )p

| |

THH(Z,[6,]/Sla — 11))) @sig)ur Slal — " THH(Z,[¢,/S,lq - 11)'”

of S'-equivariant Eo.-ring spectra.

For our purposes, the description of ku®“™ that we get from Lemmas 5.38-5.40 would be
enough, but for the sake of completeness, let us deduce a complete computation of (ku‘bc’”).

5.42. Proposition. — Let m € N. For all divisors d | m let [d]iu(t) = 37 (¢? — 1) denote
the d-series of the formal group law of ku. Then

®C -1 >0
o (k) 2= Z[8, 61/ [ ()| {Tla(®) i
where (—)?9 on the right-hand side denotes the restriction to non-negative graded degrees.

Proof sketch. We use the arithmetic fracture square (see 1.16) for ku®¢m:

][ ()

5 plm J
ku[ ] " —— T (a0 [1]

plm

ku®Em
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Using Lemmas 5.38-5.40, one readily checks that the right vertical and bottom horizontal maps
are jointly surjective on m,. Therefore, we also get a pullback on 7. It is then straightforward
to construct a map Z[S3,t]/[m]ku(t) [{[d]ku(t)_l}d\m,d¢m]>0 — 7, (ku®™). Whether this map
is an equivalence can be checked after localising m and after p-completion for all p | m, which
is again straightforward via Lemmas 5.38-5.40. O

§5.4. Cyclonic even filtrations and Habiro descent of g-Hodge complexes

Let A and R be rings that satisfy the assumptions from 4.18 and assume that 2 € R* (so that
the addendum (R2) is automatically satisfied as well). In this subsection, we’ll finally explain
how to obtain ¢-Hdgp,4 from a cyclonic structure on THH(KUg/KU4).

To this end, let us first discuss how to equip THH(kug/kus) ~ THH(Sg/Sa) ® ku with
a suitable cyclonic structure. At first, one would expect that the cyclonic structure on
THH(Sgr/S4) coming from its cyclotomic structure via 5.31 would do the job. But it doesn’t!
For example, the constructions in [Wag25, §3] are all A[g]-linear. By contrast, the canonical map
THH(Sg/SA)®“» — THH(Sg/S4)!“?, which by definition agrees with the cyclotomic Frobenius,
is not Sy-linear; instead, it is semilinear over the Tate-valued Frobenius ¢yc,: Sa — Sfp It
is thus unclear how one would construct an A[g]-linear structure on the associated graded of
some even filtration on THH (kug/ku4)?.

5.43. Cyclonic structure on THH(kugr/kuy). — To fix this, we need to modify the
cyclonic structure on THH(Sgr/S4). This requires yet another assumption on A.

(Ag) Let SZth and Si{i" denote the cyclonic structures on S given by the cyclotomic structure
from 4.18(A) and the trivial cyclotomic structure, respectively. Then we must assume that
there exists a map

S(X,Ct N Sgiv

of Eoo-algebras in CyenSp®4) whose underlying map of S*-equivariant Es-algebras is the

identity on Sa, equipped with the trivial action.

Now let THH(Sg/S4)%¥“" denotes the cyclonic structure on THH(Sg/S4) coming from the
usual cyclotomic structure. Assuming (As), we can instead consider the following cyclonic
structure:

THH(SR/SA4)¥" ®geet SHiv.

We'll then regard THH(kug /kuy) ~ THH(Sg/S4) ® ku as a cyclonic spectrum in the apparent
way, using the above cyclonic structure on THH(Sr/S4) as well as the cyclonic structure on
ku from 5.32. As we’ll see, this has the desired properties.

Let us unravel Assumption (As). Since both S(X'Ct and Sfji" are cyclotomic spectra, we have
(Si‘th)@C’" ~ S, and (SYV)®Cm ~ Sy for all m, identifying the residual (S'/C,,)-action with
the trivial S'-action on S4. In particular, after taking (—)®“", a map ST — SY induces
Sl-equivariant Eoo-maps ¢™: S4 — Sy that fit into commutative diagrams

pm
Sqg —— Sa

N

m\tC.
Silcp (pm)*cPp

tCp
Sy

(54 Beware that there may be more maps as cyclonic E.-algebras than as cyclotomic E-algebras.
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for all m € N and all primes p. It follows inductively that )" : Sy — S4 must be a lift of the
A-ring Adams operation ¢ : A — A.

5.44. Lemma. — The data of S'-equivariant Eoo-maps ¥"™: Sq — Sya together with commu-
tative diagrams as above uniquely determines a map Si‘th — Si{i" of cyclonic Eqo-algebras.

Proof. By Proposition 5.26 we may equivalently construct S?Ct — SYIV as a map of Eoc-algebras
in naive cyclonic spectra. It’s clear from the construction in Lemma 5.27 that

CAlg(CycnSpnaiV) ~ LEq( H CAIg(SpB(Sl/Cm)) —n H H CA]g(SpB(Sl/Cpm))> ’

meN () P)p,m p meEN
and so the given data indeed uniquely determines such a map. O

We'll verify in §6.1 that in all examples we can construct, Assumption (Asg) is satisfied as well.
This concludes our discussion of the cyclonic structure on THH(kug/kuy). For convenience,
let us also introduce the following notation.

5.45. Definition. — For all m € N, the m** topological cyclonic homology of kugr over kuy
is the spectrum

TC~ (™ (kup /luy) = (THH (kug /kug)C) "/

5.46. Cyclonic even filtrations in general. — Let T be a cyclonic E;-algebra and let
M be a cyclonic left T-module. Suppose that T" and M are bounded below and that for
all m € N the geometric fixed points T®¢™ are complex orientable (but we don’t require
any genuine equivariant or cyclonic complex orientation). In this situation, we expect that
the correct filtration to put on M®E™ is simply the non-equivariant even perfect filtration
fily, M*Om = fily, jrocm M ®Cm of M®Cm as a left module over T®“m. Moreover, the genuine

Cin-fixed points should be equipped with the filtration

can
ﬁl;v 1O MCm = eq (H (ﬁlzv M@Cd)hcm/d,ev — H H ((ﬁlgv M@Cd)tcp,ev)hc'm/pd,ev> )
dlm ¢ p pdlm
Here (—)"Cm/aer (=)t Crev and (—)"Cm/pdev refer to the filtered fixed points and Tate con-
struction defined [AR24, §2.3].°) The map can in the equaliser is induced by the natural
transformation (—)"“rev = (—)!Crev and the map ¢ is induced by the canonical maps

filx

P—ev/TéCPd

((beCd)th) - ﬁl*lgfeV/(T‘PCd)tcp ((M(DCd)tcp) - (ﬁlgfev/T‘bcd Mq)Cd)tcp,ev
using the construction from 4.5. To apply this construction, we need the additional assumption
that (M®)"C is homologically even over (T®Cm)hCr: this is certainly satisfied in the case
M =T that is relevant for us.

A genuine equivariant version of the even filtration was recently constructed by Keita
Allen and Lucas Piessevaux [AP25]; the author has also been informed of independent work
in progress by Jeremy Hahn. We expect that for M as above (maybe subject to some extra
assumptions), the true even filtration will agree with our formula.

(5-5This needs the residual S*-actions, so as stated the formula above only applies in the cyclonic setting but
not in the genuine Cy,-equivariant setting.
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5.47. Cyclonic even filtrations on THH (kug/kuy). — Put R(™ = R®i,¢m A. Note

that R(™ is static, since the Adams operation 9™ is flat in any perfectly covered A-ring.
Moreover, R(™) satisfies the assumptions from 4.18(R); in particular, it admits a spherical lift
given by Spm) = Sr ®s,,¢m Sa, where )™ : S4 — S4 is the lift of the A-ring Adams operation
from 5.43. We may thus define fil}, THH(kupm)/kua) via 4.23. Via base change along the
inflation inf,, : ku — ku®“" we may then equip the geometric fixed points THH (kup /ku4)®cm

with the filtration

fils, THH (kug /kua)* = fil5, THH(ku p(m) /kua) ®py,, ku2om |

ev

where ku®¢m = 7.5, (ku®“m) denotes the double-speed Whitehead filtration. We’ll check in
Lemma 5.48 below that this agrees with the usual perfect even filtration on THH(kupg/kuy)®¢m,
as long as the latter is defined. Next, we construct the filtration on genuine fixed points

fil}, o, THH(kug/ku)“m

via the formula in 5.46. Finally, using the notation introduced in Definition 5.45, we define

%, g1 T (kug/kua) = (6, ¢, THH(kug/kuy)Om)" /O
where (—)MT/Cm)ev denotes fixed points in the sense of [AR24, §2.3] with respect to the even
filtration on S[S*/C,,].

Here are two sanity checks:

5.48. Lemma. — Suppose we chose condition 3.2(Ey) for all primes p, so that kug is an
Eo-algebra in kus-modules. Then filX, THH(kug/kua)®“™ agrees with Pstrggowski’s perfect
even filtration on the Ei-ring THH(kug /kus)®m.

Proof sketch. We know from Lemma 4.24 that file, THH(kupm) /kua) agrees with Pstragowski’s
perfect even filtration. It will thus be enough to show that the canonical base change map

fil}_o, THH (kU gm) /kt14) @y, kulEm — il THH(kup/kuq) O

v

is an equivalence. It’s enough to check this on associated gradeds as both sides are exhaustive
filtrations on THH (ku p(m) /k4) ®pu ku®?™ ~ THH(kug /kua)®". Now on associated gradeds
(and in fact, one the nose) both sides can be computed by a cosimplicial resolution as in
Proposition 3.11, because THH(Sp) — Sp is faithfully even flat. We can then use a similar
argument as in Corollary 3.17 to show the desired base change equivalence. Here we use that
ku®™ is even with p-torsion free homotopy groups for all primes p by Proposition 5.42. [

5.49. Lemma. — For all m € N,

fil%, o, THH(kug/kua)“"  and £}, g TC™™ (kup/kuy)

are complete exhaustive filtrations on THH(kug/kua)“m and TC~(™ (kug/kua), respectively.

Proof sketch. For completeness, apply [AR24, Lemma 2.75(iv)] to each of the constituents of the
equaliser from 5.46. The only non-obvious thing to check is that (filX, THH(kug/ku)®Ce)tCr.ev
is complete, which follows from an argument as in 4.6. For exhaustiveness, apply [AR24,
Lemma 2.75(iv)] to each of the constituents in the equaliser from 5.46. To see that this lemma
applies, one can use Corollary 3.15. O
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We can now formulate the main result of §5.

5.50. The twisted g-Hodge filtration. — The ¢-Hodge filtration ﬁl}Hdg qg-dRpg/4 from
Theorem 4.27 can be plugged into the construction from [Wag24, 3.38] to obtain the twisted
q-Hodge filtration

* (m)
ﬁlq—?—tdgm q—dRR/A .

We will relate this to gr:’;v’ 51 TC~ ™ (kug/kuy). To this end, we must first explain how the
latter acquires a filtered structure.

Observe that il & TC~ ™ (ku/ku) =~ Ts2,((ku®m)(S/Cm)y " This computation is not
completely trivial, but it can be done in the same way as Theorem 5.51 below.(>6) As a

consequence, we see that
S grk o TC™ ™ (kug /kug)

is a module over the graded ring Z[B, q][tm]/(Btm — (¢™ — 1)) = o ((ku®m)(S/Cm)y (see
5.33). Regarding t,, as the filtration parameter, this graded ring can be identified with the

(¢"™ — 1)-adic filtration (¢™ — 1)*Z[q ](qul)

5.51. Theorem. — Let m € N. Suppose A and R satisfy the assumptions from 4.18 along
with the addenda 2 € R* and 5.43(A3). Then there exists a canonical equivalence of filtered

Z[/Ba Q] [[tm]]/(ﬁtm - (qm - 1))-m0dules

i yya,, a-dRj) — £ gl g1 TC™0 (kug/kua)

where the left-hand side denotes the completion of the twisted q-Hodge filtration ﬁl;—Hdgm q—ng}I)4
from 5.50 and the right-hand side is defined in 5.47.

To show Theorem 5.51, we'll decompose X™%* gr¥* ) TC~ ™ (kug/kuy) into a fracture
square and match it up with the construction from [Wag24, 3.38].

5.52. Fracture squares for even filtrations. — Let IV be a positive integer. We construct
an even filtration
fils, THH (kug| 5 ] /kual7])

as in 4.23, except that we replace every occurence of ku by a ku[1/N]. Moreover, for any
prime p we let

fil}, THHa (kug, /kuz,), and i}, THHa(kug,[2]/kuz,[1])

be the even filtrations given by applying 3.8 for k = ku and k = ku[1/p], respectively. By
construction, we then have a pullback square

filX, THH (kug /ku) [] £z, THH. (kug, /kuz,)

pIN
- |
fil}, THH (kug[ 4] /kua[£]) —— [ fils, THHa (kug, [1]/kug,[1])
pIN

(5-6)1n fact, it is almost a special case of that theorem, except that 2 ¢ Z*. Even so, to formulate the theorem
properly, we need this special case first.
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A similar fracture square exists for the geometric C,,-fixed points. To this end, replace R by

R(™) in the above construction and apply the base change — ®jy., ku®“™ to obtain

fil%, THH (kug[ £ ]/kua[£]) 7",
filf, THHa (kuz, /kug,) " and  fil%, THHg(kug, [L] /kug, [1]) 79"

These fit into a pullback square

filf, THH(kup/kua)*C —————— [ fil5, THHa (kug, /ku,) "
pIN

- |
A3, THH (kug[ ] /kua[ 4 ])*“" —— [] fil3, THHa (kug, [1]/kuz, [1]) "
pIN

We also note that if we define the oco-category of cyclonic solid condensed spectra as the
Lurie tensor product CycnSp ® Sp,, then THHg(kug, /kuj,) and THHg(kug, [1/p]/kui,[1/p])
can be equipped with cyclonic solid condensed structures as in 5.43 and so the expressions

THHa(kug, /kuz, )®¢m and THHa(kug, [1/p]/kui,[1/p])*“ make sense. Finally, the construc-
tions from 5.47 can also be applied in this setting, and so we obtain

fil}, g1 TC™™ (kug[ ] /kua[ 4 ]) ,
fil%, 1 TCa ™" ™ (kug, /kuz,) and A%, 1 TCa (m )(kuﬁp[%]/kugp[%]),

which fit into a pullback square

fil3, 51 TC0 (leup/kua) [T60, 6 TCa™ (kug, /kuz,)

p|N
. J
fil5, o TC™ 0 (kug[ %] kual]) —— [T 615, 5 TC"™ (kug, [2]/kuz, [2])

p|N

We will now analyse this pullback. Let us begin with the part where N is invertible.

5.53. Lemma. — Suppose N is divisible by m. Then the inflation map inf,,: ku — ku®“m
induces a filtered S*-equivariant (or more precisely, Tey-module) equivalence

(617, THE (ku” [ £]/kua[§]) @sjg) g S[q]); 5 i}, THH (kug[ 4] kua[ £]) 7 .

m(q)
Proof. Observe that the ®,,(q)-adic completion is just the projection to the m!™ factor in the
decomposition
Sy al/ ~ [Isl%.a)/®al0)
dlm

The claim then follows from Lemma 5.38 and the definition of fily, THH(kug[1/N]/kus[1/N])
and fil}, THHa(kug, [1/p]/kuz,[1/p]) as base changes along — ®ku,, kul&m, O
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Let us now analyse the p-adic part.

5.54. Lemma. — For all primes p, the inflation map inf,,: ku — ku®“" induces a filtered
Sl-equivariant (or more precisely, Te,-module) equivalence

dCm

(ﬁl;v THHa (kugy™ [1]/kui, [5]) ®spg).pm S[q])@ » — fily, THHa (kug, [2]/kuz, [$])

Proof. Analogous to Lemma 5.53. O

5.55. Lemma. — Write m = p“m,, where p is a prime and m,, is coprime to p. Then the
inflation map inf,,,: ku®r — ku®“" induces a filtered S*-equivariant (or more precisely,
Tev-module) equivalence

PCha

" ~ _ \®C
" ®sgypme S[‘ﬂ) b)) fily, THHa (kuz, /kuz,)

(ﬁlgv THH, (kuat /kuz, )

Proof. As in the proof of Lemma 5.53, observe that the ®,,(q)-adic completion, which agrees
with ®,, (¢)-adic completion as everything is already p-complete, is just a projection to the
m;)h factor in the product decomposition

dp|myp
The claim then follows from the constructions and Lemma 5.39. O
5.56. Lemma. — In the case m = p®, where p > 2 is a prime and o > 1, we have a canonical

equivalence of filtered Zp|upa, q|[tpe]/(upatpe — Ppa(q))-modules

B3 (g-dRE )0, vy = £ g ( (6, THHa (lug, fkug, ) ") /).

Proof. We’ll explain the case o = 1; the general case will follow from an analogous argument

using Lemma 5.40(c). Let 1?2,(}’ ), SrP, and kug(® denote the p-completions of R®W) 'S R, and
kg, respectively. By Remark 5.41, (ku®“?); ~ THHa(Z,[¢]/S,lq — 1]), and so we get
Sl-equivariant equivalences

THHa (kug, /kuz,)*” ~ THHa(Sg0 /S3,) @ ku®® ~ THHW(R®)[¢,]/S4,[q — 1]) -
This also induces an equivalence of S'-equivariant even filtrations

)q>cp> h(T/Cp)ev

(i1, THH (kug, /kuz, ~ il e st TC (RP[G1/81,[g — 11))

Indeed, depending on whether we are in case 3.2(E;) or (Ez), the given resolution ]/%p — ]/%',OO or

the resolution from Proposition 3.11 will also compute the Hahn—Raksit—Wilson even filtration.
By Proposition A.3 and A.5, the associated graded

272* grERW—eV,hsl TC™ (ﬁlgp) [Cp]/Sgp [[q B 1]]); = ﬁlj\/' (q_dR’g)A)?p,N)

is the completion of the Nygaard filtration on (q—ng; A);’ as desired. O
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5.57. Lemma. — In the case m = p®, where p > 2 is a prime and o > 1, we have a canonical
equivalence of filtered Zpy|[f, ][tpa]]/(ﬁtpa — (¢*" — 1))-modules

ﬁlq Hdg a (q ngz//)x) — X 2* eV St TC ® )(kuﬁp/kuﬁp) .

Proof. We use induction on «. Unravelling the equaliser from 5.46 in the case m = p® provides
us with a pullback diagram

) h(T/Cpe)ev
fil5, 51 TCa ™" (kug, /ku,) (f1z, THHa (kug, /kuz,) ") e

J . J
h(T/Cpe)ev

67, 0 TCa " (i, /kuz,) —— ( (s, THHa (kug, /kug,) ") =) 07

Let us first consider the case a = 1. In this case the bottom left corner of the diagram
above is just il , o1 TCyq (kug,/kui,), whose associated graded is filj yq,(q- dRR/A) by The-
orem 4.8. The argument in 4.6 shows that the bottom right corner can be identified with
filY, 151 TPu(kug,/kui,), whose associated graded is (¢-dRp, 4)p in every degree. The associ-
ated graded of the top right corner has been computed in Lemma 5.56. We conclude that the
associated graded of the pullback diagram above will be of the form

N7 g, o TCa ™ (kug, /kug,) —— fili(¢-dRY) )0
J . J%/A[q]
fil? 14 (¢-dR /) ., (¢-dRp/a) ,

By A.4 and the construction of the comparison map in 4.4-4.6, we see that the right vertical

map is indeed the relative Frobenius ¢4, on ¢-de Rham cohomology.

The filtered structure on ﬁlj\f(q—ng/) A)(A ) comes from the structure as a graded module
over Zy[up, q][t]/(upt, — ®p(q)), whereas the filtered structure on fil¥ 114, (¢-dRp/4)p and the
constant filtration on (¢-dRg/4)p are presented as graded Z[S][t]- modules Changing the
filtration parameter from ¢ to ¢, = ®,(q)t has the effect of “rescaling” filtrations by ®,(¢) as in
[Wag24, 3.32]. The resulting diagram almost looks like the completion of the defining pullback

of ﬁlq Hdg,, (q—ng) A)$ , except for the following subtlety: The rescaled filtrations
®,(q)" fil7 ag(¢-dRpya), and  ®p(q)*(¢-dRg/a),

are already complete, so ®,(g)* fil}_ Hdg(q—(ﬁ\{R/A)g and ép(q)*(q—af\{R/A)g are not the com-
pletions of these filtrations. To see that the pullback above still yields the completion of

1% 30 (q-ng) )b, just observe that the pullback

17 t10g (4-dRAa), —— (¢-dRpsa),

S

fil; 1ag (4-dR/a)) —— (¢-dRpsa);
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stays a pullback after rescaling everything by ®,(¢). This is clear since rescaling preserves all
limits. This concludes the proof in the case o = 1.

Now let o > 2. Using a similar argument as in 4.6, we see that the associated graded of
((fil%, THHg(kug, /kug, )1 )tCrev )T/Coev is given by (¢- ng%/Al))(ApyN) in every degree.
Thus, the associated graded of the pullback diagram from the beginning of the proof will take
the form

57 a0 TCx ) (g, k) —— i (a-dRE),

J il J%/A[q]

61} g, (2-0RE ), (R4 )Gy

N)

Again, changing the filtration parameter from ¢,a-1 to ¢y introduces a “rescaling” by ®«(q) in
the bottom row. The resulting diagram looks almost like the completion of the defining pullback
of ﬁlq Hdg (q ng% //)1) except that again the rescaled filtrations are already complete. To fix
this and to finish the proof, it will be enough to check that the diagram

a 1 A " a—1 A
i gy, (a- dr'? M >)p . ﬁlN(q-ng/A ))p (¢-ar", o ))p

J . | . |

A

A * a—1 a
i pyag (4 ST o >)p _ ﬁlN(q-ng’/A >)(p7N) (g-dRrY 9 ))(p v

consists of two pullback squares (so that we still get a pullback after rescaling the outer rectangle
by ®,0(q)). Now the right square is a pullback since every filtration is the pullback of its
completion. To see that the left square is a pullback, we observe that in the definition of
ﬁlq Hdgya-1 (q dRS%/A )) the only occuring non-complete filtration is ﬁlN(q ng%/A ));, as the
other two filtrations are rescaled by ®,0-1(¢) and thus automatically complete. O

Proof sketch of Theorem 5.51. We analyse the factors of the last fracture square from 5.52 in
the case where N is divisible by m and check that they match up with those from [Wag24,
3.38].

(a) Once we invert N, all filtered Tate constructions (—)!“»ev for p | m will vanish, using that
the non-filtered Tate construction (—)*“» vanishes on S[1/p]-modules plus an argument as
in 4.6. So the equaliser from 5.46 will just be a product. Together with Lemma 5.53, we
conclude that fil & TC~ ™) (kug[1/N]/kuu[1/N]) is the product

A

®4(q)

[T (612, TO (kun[ 4]/kua[ 1) @i 0 Sl

dlm

and therefore ¥~ g w51 TCT (M) (kug[1/N]/kus[1/N]) is the completion of the filtered
Z[B, ql[tm]/ (Btm — ( — 1))-module

TT (60 g 9-dR R4 @l Al %] @ule)
dlm
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(b) A similar analysis as in (a) shows that ™ gr* ., TC™ (m )(kufgp[l/p]/kugp[l/p]) is the
completion of the filtered Z[B, q|[tm]/(Btm — ( —1))-module

A

H (ﬁIZ-Hdg ¢-dRp/a ®I;l[q]7wd A[q])p [%]gd(Q) '
dlm

(¢) After p-completion for any p | N, we observe as in (a) that all filtered Tate constructions
(—)!C%ev vanish for £ # p. Simplifying the equaliser accordingly and using Lemma 5.55,
we find that fil} ¢ TC— (M) (kug,/kuj,) is given by the product

A

11 <ﬁ1§v 51 TC™#) (kugis) /ku, ) gy e S[q]) ’
’ ’ ®a,(9)

dp|myp

where we put m = p*m, with m, Coprime to p. Using Lemma 5.56, we deduce that

the sheared associated graded -2 gr* vs1 TC™ (m )(kuﬁp /kuj,) is the completion of the

filtered Z[5, q][tm]/(Btm — (¢™ — 1))- module

H (ﬁlq Hdgya (a- dR’g%/f)l) ®A[ 1yde A[Q])

dp|myp

A

(p,@a, (a))

Evidently, (a)—(c) above match up with [Wag24, 3.38(a)—(c)]. It’s straightforward to check
(using Lemma 4.13) that also the maps between them match up. This proves what we want. [

As a consequence we obtain a “TR-style” description of derived ¢-de Rham—Witt complexes.
The question whether such a description exists was first raised by Johannes Anschiitz in the
author’s Master’s thesis defense.

5.58. Corollary. — The associated graded of the even filtration fil3, o, THH (kug /kus)Cm
s given by

S gr¥, ¢, THH(kug/kus) ™ ~ ¢-Wp,dRF, 4 -
Proof sketch. This follows from Theorem 5.51 and [Wag25, Proposition 3.49]. O
Finally, let us explain how to recover the Habiro-Hodge complex ¢g-Hdgg, 4.

5.59. Cyclonic even filtrations on THH(KUgr/KU4). — Put KUy = KU® S4 and
KUg = KU® Sg. We equip KU with its cyclonic structure from 5.32 and

THH(KUr/KU,4) ~ THH(kug/kua) ®Qky KU
with the base change of the cyclonic structure from 5.43. We also let

ev

fil}, ¢, THH(KUg/KU4)%" = = fil}, o, THH(kuR/kuA)Cm OpuCm KU&m
where kuS™ = 759, (ku®") and KUS™ = 755, (KU"). Observe that — Ry Crm KU
be regarded as a localisation at the element  sitting in homotopical degree 2 “and ﬁltratlon

degree 1. Finally, we construct

fil}, 1 TC0") (KUR/KU ) = (615, 0, THH(KUR/KU 4)%m) "/
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5.60. Remark. — If we believe that our construction of fil}, o THH(kug/kua)™ is the
“correct” filtration to put on THH(kug/kus)®™ (see the discussion in 5.46), then the construc-

tion from 5.59 provides the correct even filtration for THH(KUg/KU 4)“™, since taking even
filtrations should commute with filtered colimits.

5.61. Lemma. — For all m € N, the filtered objects
fil%, o, THH(KUR/KUA)“™  and fil}, 5 TC™ ™ (KUg/KUy)

are complete and exhaustive filtrations on THH(KUg/KU 4)" and TC™"™ (KUg/KU ), re-
spectively.

Proof sketch. Observe that inverting the element S in homotopical degree 2 and filtration
degree 1 preserves the assumptions of [AR24, Lemma 2.75(iv)]. We can thus use the same
argument as in Lemma 5.49. O

5.62. Remark. — In the general setup of 5.46, we have canonical maps
815, 7.0, M Om — (fil7, e, M C")hcm/"’ev

hC,,

whenever n | m. Indeed, upon applying (—)"~m/mev, the equaliser diagram for fil} e M Cn

becomes a subdiagram of that for fil”, JT,Com MSm . As a consequence, we get canonical maps

fil}, g1 TC™M(KUR/KU,) — fil}, o TC™)(KUR/KU4) .

ev,S

and similarly for ku. It’s possible to construct these maps coherently, that is, assemble them
into functor N — SynSp. Since we’re only interested in the limit, the individual maps will
suffice, as we can always restrict to the sequential subposet {n!},>; C N.

5.63. Theorem. — Let m € N. Suppose A and R satisfy the assumptions from 4.18 along
with the addenda 2 € R* and 5.43(As). Then there exists a canonical Z[BF']-linear equivalence

g-Hdgp A[FH] = 22 gr* ( lim £}, g TO~0"(KUR/KU A)) .
Proof. Let us first verify that

<(ﬁ1§V7 o TC™ (kug /kuy)) [5—1])A LAY, o TC™ M (KUR/KU,),

where ( sits in homotopical degree 2 and filtration degree 1, whereas t,, sits in homotopi-
cal degree —2 and filtration degree —1 of 7'22*((1{110"‘)’1(51/ Cm)). Indeed, we can identify
the t,,-adic filtration on (—)MT/Cmlev with the filtration coming from the CW filtration on
ku[S!/Cp]ev in the sense of [AR24, Construction 2.52]. This shows that both sides above
are t,,-complete, so the map exists, and after reduction modulo t,, we recover the defining
equivalence fil}, o THH(kup/kuy)om[7] ~ fily ¢, THH(KUg/KU )", so also the map
above is an equivalence.

As a consequence of this observation and Theorem 5.51, we obtain that the filtration
ﬁlg\,, g1 TC— (™) (KUgr/KU,) is periodic and each graded piece is equivalent to

; A
P s 1] |
(gm—1)

grl, 61 TC™M(KUp/KU 4) ~ g-dRY) [(qm_l)
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where we use the notation from [Wag25, Construction 3.42]. Also observe that since we complete

at (¢"™ — 1) anyway, it doesn’t matter whether we use q—(ﬂ?{g% or q—dR(m) in this formula, so

R/A
the right-hand side agrees with ¢-Hdgg 4 -
By tracing through the constructions it’s straightforward to check that for any n | m the
map Y2 gre, s TC~ ™ (kug /kuy) — L2 groy 51 TC~ ™ (kug/kuy) from Remark 5.62 is the
completion of the transition map

* (m) * (n)
ﬁlq-Hdgm q_dRR/A - ﬁlq-Hdgn q_dRR/A
from [Wag25, Construction 3.41]. Therefore,
272 g (lim 67, 1 TC™)(KUR/KUs)) = lim q-Hdgpsa (5] > g-Hdgpyal 5],

as desired. ]
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§6. Examples

§6.1. Examples of spherical lifts

The assumptions of our main results—Theorems 4.27, 5.51, and 5.63—seem quite restrictive
at first. In this subsection we’ll show that there are nevertheless many nontrivial examples to
which the theorems apply. We'll start with examples of A-rings A that satisfy the assumptions
from 4.18(A).

6.1. Example. — If A = Z[x; | i € I] is a polynomial ring equipped with the toric A-
structure in which ¢"™(z;) = «* for all m, then the assumptions from 3.1 are satisfied. Indeed,
we can choose Sy ~ S[z; | i € I] to be flat spherical polynomial ring. As explained in [BMS19,
Proposition 11.3], this is a cyclotomic basis and for every prime p the Tate-valued Frobenius
satisfies ¢yc, (w5) = 2} = PP ().

6.2. Example. — If A is a perfect A-ring, then the assumptions from 3.1 are also satisfied:
For every prime p, the spherical Witt vector ring Sy (4, from [L-Ell;;, Example 5.2.7] yields
a p-complete lift of A. These can be glued with A ® Q in a canonical way to yield S4. To
construct the structure of a cyclotomic base and check 3.1(*“?) for all primes p, we must equip
the Tate-valued Frobenius

brc,: Sa — Sfp

with an S'-equivariant structure, where S, receives the trivial action and Sf” the residual
St/ Cp=~S Laction. Equivalently, we must factor ¢tc, through an Eo.-map

tCp\h(S1/Cp) _ (qtST\A

Sa— (S47) ~(S%),-
By the universal property of spherical Witt vectors, for all m € N and all primes p the Adams
operation ¢™: A — A lifts to an Eoc-map ™ : Sw(a/p) — Swa/p)- These can be glued with
the rationalisation to obtain an Eso-map ™ : S4 — Sa. From the trivial S'-action we also
obtain a map S4 — S’AS ' that splits the usual limit projection. The desired factorisation of
¢1c, is then given by

Sa &, Sa— SZSI — (Sffl); — SZC” .

To see that the composition is really ¢;c,, we use the universal property of spherical Witt
vectors again: It’s enough to check that the map on my(—)/p is the Frobenius on A/p, which is

clear from the construction.

6.3. Example. — We can also combine Examples 6.1 and 6.2 and consider A to be a
polynomial ring over a perfect A-ring, or even a localisation of such a ring, as long as it still
carries a A-structure.

The examples where A is a polynomial ring (over a perfect A-ring) are the most relevant
for us, since they are expected to show up in the connection with the work of Garoufalidis—
Scholze-~Wheeler-Zagier ([GSWZ24], but the relative case was only discussed in [Sch24b]).
Nevertheless, there are examples that are not of this form, such as the following.

6.4. Example. — Recall that the polynomial ring Z[y] admits one more A-structure besides
the toric one ([Cla94]; see also [Manl6]). This other A-structure is called the Chebyshev
A-structure, since 9™ (y) is given by the Chebyshev polynomial T, (y). If Z[z*'] is equipped
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with the toric A-structure, then the Chebyshev A-structure on Z[y] can be identified with the
fixed points of the Cs-action on Z[z™1] that sends = + 2~!. Under this identification we have
Yy=x+ s

We'll show that A = Z[3,y] still satisfies 4.18(A). Indeed, as soon as 2 is invertible, the
homotopy fixed points S[3,y] := S[3,2%1]"“2 define the desired Eo.-lift. To verify that 3.1(*C7)
is satisfied for all primes p, there’s nothing to do for p = 2, as then S[%, y]*¢? ~ 0. For p # 2,
(=) and (—)"“2 commute (see [KN17, Lemma 9.3] for example) and so 3.1(*“?) follows from
the corresponding assertions for S[%, x*1] by applying (—)"“2. The same argument shows that
the addendum from 5.43(A,) is satisfied as well.

6.5. Remark. — Recall that a cyclotomic spectrum X has Frobenius lifts in the sense of
[KN17, Definition 8.2] if for each prime p the cyclotomic Frobenius ¢,: X — X tCr factors
Sl-equivariantly through a map Pp: X — X hCv such that the Y, commute for different primes.

In each of Examples 6.1-6.4 it’s clear that S, admits Frobenius lifts as a cyclotomic Eyo-
algebra. Using Lemma 5.44, this implies that Assumption 5.43(As) is satisfied. Indeed, since the
Sl-action is trivial, we may equivalently regard Yp: Sa — SZC” as an S'-equivariant E..-algebra
map 9?: Sy — S4. The commutativity datum simply provides homotopies 1P o )¢ ~ )¢ o9p? for
all p # ¢. Inductively defining ¢! := id, ¥P™ = 1™ o 9P, we obtain the necessary commutative
diagrams

pm
Sqg —— Sa

o

m\tC
Silcp (ypm)tep Silcp
and thus the desired map ST — SYv.
6.6. Non-example. — In the case where A = Z{z}, is a free A-ring, it’s not known whether

a spherical lift S4 as in 3.1 exist.(6-1)
Let us now give several examples of A-algebras R that satisfy the assumptions of 4.18(R).

6.7. Example. — Suppose that S is a smooth A-algebra equipped with an étale map
O: Alzy,...,2,] — S. By [L-HA, Theorem 7.5.4.3], O lifts uniquely to an étale map
Salz1,...,2n] — Sg o of Ex-ring spectra. Then R = S satisfies the assumptions of 4.18(R),
choosing 3.2(Ez) for every prime p. We’ll continue to study this example in §6.2 below.

6.8. Example. — In the setting from Example 6.7, suppose that (yi,...,¥,) is a regular
sequence in S. By Burklund’s theorem about multiplicative structures on quotients [Bur22,
Theorem 1.5], the spectrum

Sk =Ss0/ (", ¥"") ~Ss0/y" Osg - Bsg o Ss,0/yn

admits an Eg-structure in S-modules (even in Sgg-modules) if all a; are even and > 6. If 2 is
invertible in S, it’s already enough to have all o; > 3, with no evenness assumption. In either
case, we see that R = S/(y{",...,y2") satisfies the assumptions of 4.18(R), choosing 3.2(E3)
for every prime p.

(6-D1p fact, it is a conjecture of Thomas Nikolaus that such a spherical lift doesn’t exist.
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If we only assume that all «; are even and > 4, or 2 is invertible in S and all «; > 2, then S
still admits an Eq-structure in Sg o-modules. Provided that R is p-torsion free, condition 3.2(E;)
is satisfied for every prime p. Indeed, if we put

/Rp,oo = ( p<m1/p e 7m711/’p°°> ®A\p(ﬂf1:~'vxn> ﬁp)

A
p

then the p-completed Cech nerve of Ep — ﬁp,oo admits a spherical E;-lift, given by the p-

completed base change along S[x1,...,2,] — Sg of the Cech nerve of the Eo-algebra map
Salzi, ..., xn] — Salx; Lp= , ..,:c}/p ].
6.9. Example. — The easiest way for 3.2(E) to be satisfied is the case where R/p is already

relatively semiperfect over A, so that we can take the trivial descent diagram for the identity
on R Then the only condition is for R to admit an Eq-lift Sg, in S4-modules.

Thanks to Burklund’s result again, it’s easy to write down rings for which this is satisfied for
all primes p. Here’s one possible construction: Let B be a relatively perfect A-A-algebra such
that A — B is quasi-lci.(°?) For example, we could take B = A[z'/" | n > 1] with the toric
A-structure or B = A ®gz Z{x}A pert, the free A-A-algebra on a perfect generator. Let B’ be an
étale B-algebra and let (yi,...,y,) be a regular sequence in B’. Then R = B'/(y",...,y%")
satisfies 3.2(E,) if all o; are even and > 4. If 2 is invertible in R, it’s already enough to have
all a; > 2 with no evenness assumptiAon.

Indeed, since each p-completions B{D is all p-completely formally étale over A, it lifts uniquely
to a p-complete connective Eqo-S 4-algebra S BY- Our assumptions on the «; ensure that [Bur22,
Theorem 1.5] applies, so that

Sk, =SB, /(11" 47")

admits an Ei-structure in S4-modules (even in S ﬁp—modules), as desired.

§6.2. The case of a framed smooth algebra

In the situation of Example 6.7, the g-deformation of the Hodge filtration that we see has a
very nice explicit description. This result is due to Arpon Raksit; in fact, his result is what
motivated our investigation. To formulate the result, recall that in the situation at hand, the
(underived) g-de Rham complex g-{2g/4 can be represented by an explicit complex

v Voo
0-0ya0 = (Sla =115 Qhjula - 1] 5 -+ 25 Qe - 11)
6.10. Theorem (Raksit, unpublished). — Let (S,00) be a framed smooth A-algebra as in

Ezample 6.7 and put kugn = ku®Sgn. For all integers i we let ﬁl;fHdg,D q—Q"é/AEI denote the
subcomplex

((a=1)Sla =11 = (4= V70 ula — 1] = -+ = Qhpale = 1] = -+ = Qala - 11) -

of the coordinate-dependent q-de Rham complex q—Qg/A o (which we regard as sitting in homo-
topical degrees [—n,0]). Then

S grl, TC™ (kug o/kua) ~ fily 14 0425 /4 1 -

(6:2)For every prime p, the relatively perfect map of 5-rings A, — B, will automatically be p-quasi-lci, so A — B
being quasi-lci is a rational condition.
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§6.2. THE CASE OF A FRAMED SMOOTH ALGEBRA

While Raksit’s original proof uses geometric arguments, we’ll give a more algebraic proof of
Theorem 6.10. We first need a general fact about g-divided powers.

6.11. Lemma. — Fiz a prime p. Consider Zy[z,y,q], equipped with the toric ¢-structure,
and let N
¢(z —y) }

[Pla (p,g—1) .

Then g-D is the (p, ¢ — 1)-completion of the subalgebra of Qp[xz,y][q— 1] generated by Zy|x,y, q]
as well as elements (q — 1)‘@3(3} —y) for alld > 1, where we put

q_D = Zp[ma Y, q]{

(z—y)(@—qy) - (z —q¢"?

y)
(4;9)a '

- y) =

Proof. Tt will be enough to show that ¢-D contains (¢ — 1)dﬁg(az —y) for all d > 1, as then
the fact that these are generators as well as the claimed description of ¢-D can be checked
modulo (¢ — 1).

First observe that (p,q — 1) is a regular sequence in ¢-D. Indeed, ¢-D/(q — 1), where the
quotient is taken in the derived sense as usual, is the PD-envelope of (z — y) C Z,[z, y], which
is a p-torsion free ring. It follows that (p, (¢;q)q) is a regular sequence for all d > 1. Indeed, up
to factors that are invertible in g-D, the Pochhammer symbol is a product of factors of the
form (1 —¢”"), and (1—¢?") = (1—¢)?" mod p. In particular, each (g; q)q is a non-zerodivisor
in g-D.

If we equip Zp[z,y, q] with the toric A-structure, then the Adams operations * for £ # p
are d-ring maps. Using the universal property it is then straightforward to check that the 1)
extend to ¢-D, hence ¢-D carries a A-Zy[z, y, q]-structure extending the given é-structure. This
A-structure extends then uniquely to the localisation ¢-D[(g; q);1 | d > 1]. In the localisation,

we have
df*—Y ~d .
W(EZY) =3 -

see [Pril9, Lemma 1.3]. So we must show (q— l)d)\d(x y) € g-D. To this end, first observe that
(¢ — 1)@!}%%) € g-D for all d > 1. Indeed, it’s enough to check this if d = p® is a power of p.
So we must check that 2P” — yP is divisible by [p®], in ¢-D. Since ¢-D is (p, ¢ — 1)-completely
flat over Zy[q — 1] by [BSl9 Lemma 16.10] and thus flat on the nose over Z[q], it will be
enough to check that zP" — P is divisible by each cyclotomlc polynomlal in the factorisation
[p%]g = Pp(q)P,2(q) - - Ppe(q). Since z?" — y?* divides zP" — y?” for i < «, it suffices to show
that 27" — y?* is divisible by ®,a(q), which follows by applying ¢*~* to ¢(x — y)/[p]e-

Now let us put A(—) = > 45 A=)t and (=) = D a1 (=)t where t is a formal
variable. Our observation above shows that w(q—l)t(%) has coefficients in ¢-D. From the

general A-ring formula i, = —t%log A_+ we deduce that )\(q,l)t(%) has coefficients in
q-D[p~1]. Since (p, (¢;q)q) is a regular sequence in ¢-D, the we get

¢-D[p~'|n¢-D[(q:9);"] = ¢-D,

where the intersection is taken in ¢-D[p~', (¢;¢);'] (and on the level of sets—nothing derived
is happening). This shows (¢ — 1)d/\d(’” y) € ¢-D, as desired. O

6.12. A cosimplicial resolution. — To show Theorem 6.10, we’ll compute the even
filtration via an explicit resolution. To this end, let us fix the following notation:
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§6. EXAMPLES

(a) Let P:= Alxy,...,z,] and Sp := Sy[z1,...,2,]. Let A — P® and Sy — Spe denote the
Cech nerves of A — P and Sy — Sp and put kupe := ku ® Spe.

(b) Let 2{”) € P* = P®a(+1) denote the element 1® - ® 1 ®2; ®1®---® 1 coming from
the r*h tensor factor for any 1 <r < e+ 1.

(c) Let ¢g-D* denote the (¢ — 1)-completion of the sub-algebra of (S®4(**1) ®@; Q)[q — 1]
generated by S®4(+1)[¢ — 1] as well as the elements (q — 1)d%l (zgr) - J:ES)) for all integers
d > 1, all tensor factors 1 <r,s < e+ 1, and all indices 1 <7 < n.

(d) Let fil} 4, g-D°® be the descending filtration of ideals generated by (¢ — 1) in filtration

degree 1 and the elements (g — 1)d%l( (r) xz(.s)) in filtration degree d, and let ﬁl;,Hdg q—ﬁ'

denote the completion of this ﬁltratlon

6.13. Lemma. — With notation as above, there exists a canonical isomorphism of graded
Z[B][t] = (¢ — 1)*Z[q — 1]-modules

a4 TC™ (kug,o/kupe) = Al 4. ¢-D° .

Proof. We know from Theorem 4.27 that mo, TC™ (kug n/kups) is the completion of a filtration
ﬁl;,Hdg q-dRg/ps. Consider the arithmetic fracture square for the completed filtration:

A% 1145 ¢-dRs) pe T 617 sraq (g-dRs /pe))
p

i l A

fil{tiag,g-1) (AR pe @z Q)I/-\Idg[[q 1] —— filfgag 41 (H (dRS/P'); ®z @) Hdg[[q —1]
p

Observe that all corners of this pullback square are static in every filtration degree. Indeed,
this can easily be checked modulo (¢ — 1). More precisely, if we identify the (¢ — 1)-adic
filtration (¢ — 1)*Z[q — 1] with the graded ring Z[S][¢] as in 4.26, then everything is -complete;
modulo B, we’re then reduced to checking that ﬁl*Hdg (Tﬁs/ pe as well as its p-completions and
its Hodge-completed rationalisation are static, which is standard.

We conclude that this diagram is also a pullback of filtered abelian groups, which will make
it easy to construct a map ﬁlq Hdg 4~ D* — ﬁlq Hdg 4~ dRS/ pe. To this end, let us now analyse
the factors of the pullback. Let us start with the p-completed ¢g-de Rham complex (g-dRg, Pe)p-
Since d-structures extend uniquely along p-completely étale maps, the toric §-A-algebra structure
on P' extends uniquely to a d-A-algebra structure on (S®4(+1)) Then (g- dRg/ps)p is the
q—PD envelope in the sense of [BS19, Lemma 16.10] of the (p,q — 1)-completely regular ideal

j; = ker((S®A(°+1)) = S, )
Using Lemma 6.11 we see that (¢-dRg)ps); contains all the elements (¢ 1)df~yg( ) _ ZL‘SS)).
By Theorem 4.17, for any fixed d, these elements are contained in ﬁlq_Hdg(q dRg/ Pe)p-

The rational factor is similar: Since P — S is étale, the Hodge-completed de Rham
complex satisfies dRg/pe >~ dRg/s@4(e+1), and so (dRg/pe @z Q)f{dg[[q —1] is the (Jg, ¢ —1)-adic
completion of (S®4(*+Y) @, Q)[q — 1], where

Jo = ker((S®A('+1) Xz Q) — (S ®z @)) .
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§6.3. THE HABIRO RING OF A NUMBER FIELD, HOMOTOPICALLY

Since :BST) — :nl(-s) is an element of Jg, it’s also clear that S'/g(xl(r) — :L‘Z(S)) is contained in

ﬁlz(Hd&q_l)(dRS/po Rz (@)ﬁdgﬂq — 1]. Using the pullback above we get a filtered map

ﬁl;—Hdg q—_ﬁ. — ﬁl;—Hdg q—dRS/Po .

Reducing modulo (¢ — 1), or more precisely modulo 3, we see that this map is an isomorphism,
which finishes the proof. O

Proof of Theorem 6.10. The even filtration in question can be computed via the cosimplicial
resolution
ﬁlgv TCf(kuSﬂ/kuA) ~ liin T>2% TC’(kugﬂ/kup.) .

Using Lemma 6.13, it remains to show that the totalisation of the cosimplicial filtered ring
fil} jag ¢-D°® is quasi-isomorphic to the filtered complex fil} jjq, 1 ¢-2% a0 We'll show this
using a similar argument as in the proof of [BS19, Theorem 16.22].

To this end, first observe that the g-divided powers from Lemma 6.11 interact with the
g-derivatives as follows:

-0:(F(x—y) =3 (x—y) and ¢-0,(F(z—y)) =3 " —qv).
It follows that the g-derivatives extend to q—ﬁ'. We can then consider the filtered cosimplicial
filtered complex fil* g-M** given by

(61 g 0-D* =5 175k, 4-D° @pe Qg £ A2, 0-D° @ Oy £ -
Then each column fil* ¢-M*»* is quasi-isomorphic to fil* ¢-M%*; indeed, this can be checked
modulo (¢ — 1), and then it follows from the Poincaré lemma for the completed Hodge-filtered
de Rham complex. On the other hand the rows fil* ¢-M*7 for j > 0 are acyclic; this can be
seen e.g. by [Stacks, Tag 07L7] applied to the cosimplicial filtered ring fil} 114, q—lA)'. It follows
formally that the 0 column fil* ¢-M%* is quasi-isomorphic to the totalisation of the 0" row
fil* g-M*°, which is exactly what we wanted to show. O

6.14. Remark. — As a consequence of Theorem 6.10, the filtered complex ﬁlg,Hdg’D q-2% A0
can be promoted to a filtered E.-algebra over the filtered ring (¢ — 1)*AJg — 1]. In fact, we
even get the structure of a filtered derived commutative algebra in the sense of [Rak21,
Definition 4.3.4].

§6.3. The Habiro ring of a number field, homotopically

As a final example, let us give a homotopical description of the Habiro ring of a number field
from [GSWZ24, Definition 1.1].

6.15. Corollary. — Let F' be a number field and let A be divisible by 6 and by the discriminant
of F'. Let Sp,[1/a] denote the unique lift of Or[1/A] to an étale extension of S. Then

~ . h(S'/Cm
Horfr/a) = 7o ( Jim (THH(KU ® So,.(1/a]/KU) ") e )> :
Proof. By [Wag25, Corollary 3.12], ¢-Hdgo,1/a]/z =~ Hop[1/a]- In particular, the Habiro—
Hodge complex must be static. By Theorem 5.63, lim,en ﬁlgv,sl TCf(m)(KU ®So,[1/a]/KU)

must be the double-speed Whitehead filtration 72, and the result follows. O

87


https://arxiv.org/pdf/1905.08229.pdf#theorem.16.22
http://stacks.math.columbia.edu/tag/07L7
https://arxiv.org/pdf/2007.02576#block.4.3.4
https://arxiv.org/pdf/2412.04241.pdf#proposition.1.1
https://guests.mpim-bonn.mpg.de/ferdinand/q-Habiro.pdf#theorem.3.12

Appendix A. THE ¢-DE RHAM COMPLEX viA TC™

Appendix A. The g-de Rham complex via TC™

In [BMS19, §11] and [BS19, §15.2], it is explained how prismatic cohomology relative to a
Breuil-Kisin prism (W(k)[z], E(z)) can be understood in terms of TC™(—/S[z])p. In this
subsection, we’ll show how the p-complete g-de Rham complex can be understood in a completely
analogous way.

For this to work, we assume that A satisfies the conditions from 3.1, that is, A is a p-complete
and p-completely covered d-ring with a flat spherical lift S4 which admits the structure of a
p-cyclotomic base.

A.1. Lemma. — The p-completed colimit-perfection As of A admits a unique lift to a
p-complete connective Eo-ring spectrum Sa. and A — As can be lifted to an Es-map
Sa—Sa_.

Proof. Since A is a perfect d-ring, the lift S4_ exists uniquely; it is given by the spherical
Witt vectors Syy(4s_y from Example [L-Elljr, 5.2.7].

To construct the map S4 — Sa__, first observe that the canonical map Sy — Sff” is an
equivalence. Indeed, we can choose a two-term resolution 0 — @;Z, — @©;Z, — A — 0
and lift it to a cofibre sequence @;S, — @ ;S, — Sa of spectra. By the Segal conjecture,
(D;Sp)C ~ (D;Sp)p and likewise for J, so the same will be true for S4. We can then form
the sequential colimit

. [o1%e) tC dtc N
collm<SA—p>SAp: A — ]
p

By our assumptions on A, the Tate-valued Frobenius ¢;c, agrees with ¢ on mp, and so this
colimit is a p-complete connective Eo-lift of As,. By uniqueness, it must agree with S4__, and

so we get our desired map S4 — S4,__. O
A.2. Lemma. — There are generators u and v in w2 and m—3 of TC™(Zy[Cp]/Splla — 1])p
such that

s TC (ZplGp /Spla — 11);, = Zplla — 1] [u, v]/ (wo — [ply) -

Proof. This can be shown in the same way as [BMS19, Proposition 11.10], using base change
along S[q — 1] — S[¢"/?™ —1]. O

A.3. Proposition. — Let S be a p-complete p-quasi-lci A[(p]-algebra of bounded p>-torsion.
Then there is an equivalence of graded Eoo-Zp[q — 1][u, v]/(uv — [plq)-algebras

=7 grfrweevnst TC™(S/Sallg — 1]]); ~ filyy AE‘?p/)Aﬂqfl]] ’

where grEwaevy ngt denotes the associated graded of the p-complete S L_equivariant Hahn-Raksit—

Wilson even filtration and (—)®) (instead of (=)(V)) denotes the Frobenius twist of prismatic
cohomology. Moreover, after inverting u, we get an equivalence of graded Eoo-Zp[u™'][q — 1]-
algebras

27 grfirw vt (TCT(8/8ale = D[], ) = spage-nlw™],

where now gripw.ey Tefers to the p-complete St -equivariant Hahn—Raksit-Wilson even filtration
on THH(S/Salq — 1])[1/u}.
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Appendix A. THE ¢-DE RHAM COMPLEX viA TC™

Proof sketch. First observe that So = (S ®iﬂq71]] Aso[q"P — 1])p will be static and of
bounded p*>°-torsion, as ¢: A — A is p-completely flat. Moreover, S, will be p-quasi-lci
over Aso[qt/P* — 1], hence over Zy, as the cotangent complex Ly 1/ _qj /7, vanishes after
p-completion. Thus S is p-quasi-syntomic.

If S is large in the sense that there exists a surjection A(xil/poo | i € I) - S, then
TC™(S/Salg — 1])p will be even. Indeed, evenness can be checked after base change along
Salg — 1] — Sa[¢*/?” — 1]. By an analogous argument as in [BMS19, Proposition 11.7],

THH(Sa. [¢"7" —1]) — Sa[¢"?" — 1]

is an equivalence after p-completion. This reduces the assertion to TC™ (S ), being even,
which is shown in [BMS19, Theorem 7.2].

Via quasi-syntomic descent from the large case, we can now construct a filtration on
TC™(S/Salg — 1])p. Arguing as in [BMS19, §11.2] and [BS19, §15.2], we find that the
associated graded of this filtration yields the completion of the Nygaard filtration on the
Frobenius-twisted prismatic cohomology relative to the g-de Rham prism (AJg — 1], [p]y). To
see that the filtration agrees with the p-complete S'-equivariant Hahn-Raksit-Wilson even
filtration, we argue as in the proof of [HRW22, Theorem 5.0.3]. Choose a surjection from a
polynomial ring Z[z; | i € I] — S. Both filtrations satisfy descent along the p-completely eff

map THH(S[z; | i € I]) — THH(S[:U}MOO | i € I]). By descent, it will then be enough to check
that the filtrations agree when S is large, which is clear by evenness.
After inverting u, the argument is analogous: As in [BMS19, §11.3], we use quasi-syntomic

descent again to construct a filtration
filats e (TC™(S/Sale = )], )

and check via descent along THH(S[z; | ¢ € I]) — THH(S[:L‘il/poo | © € I]) that this filtration is
really the Hahn-Raksit-Wilson even filtration. To see grfipw.ey nst =  S/A[g—1] [ut1], observe

that inverting the degree 2 class u amounts to adjoining [p]q_i ﬁlf\/ for all # > 0 in the sense
of [Wag25, Construction 3.42]. We must then show that the relative Frobenius induces an

equivalence ‘
() fily

P/Alq-1] S/A[q—1] [ [p]z
This is a general fact about the Nygaard filtration on prismatic cohomology; it follows,
for example, from [BS19, Theorem 15.2(2)] via quasi-syntomic descent. See also [Wag25,
Lemma 3.44]. O

i>0] — s/l

A.4. Frobenii. — The same argument as in [BMS19, Proposition 11.10] shows that the
p-cyclotomic Frobenius

d’ZSl : TC™ (Zp[Cp]/S[[q - 1]]); - TP(Zp[Cp]/SHq - 1]]);

inverts the generator u in degree 2. Moreover, the p-cyclotomic Frobenius on THH(—/S4 p[¢—1])

is semilinear with respect to the Tate-valued Frobenius ¢ic,: Sa p[q] — Sa p[q], which on g is

given by ¢: A — A and ¢q — ¢P. It follows that the p-cyclotomic Frobenius induces a map
(T (8/8ala ~ 11)[2] ®s,1a) 0, Salal)

A

() — TP(S/SA[[(] - 1]])

A
p .
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Appendix A. THE ¢-DE RHAM COMPLEX viA TC™

On gr%waev, this map agrees with the Nygaard completion g? Alg—1] Ag)/) Alg—1] 38 the proof

of Proposition A.3 shows. The relative Frobenius on prismatic cohomology,

)
P/Al-1]"  sjafg-1] — S/Ala-1]>

can then be identified as the composition of gr%RW_eV TP ~ gr%RW_eV TC™ with

grfimv-er TC™ (8/Sala = 11)) — grfimveey (TCT(S/Sale = ) [E]},,)

A.5. Recovering g-de Rham cohomology. — Let R be a p-torsion free p-quasi-lci
A-algebra and let R®) .= (R ®a’¢ A)p. Then [BS19, Theorem 16.18] shows

¢-dRp/a =~ Ro)(¢,)/Alg-1] -

Therefore Proposition A.3 and A.4 contain ¢g-de Rham cohomology (which is implicitly p-
completed by our convention in 1.16) as a special case.

A.6. The Adams action. — In [BL22, §3.8], Bhatt-Lurie describe an action of Z,' on the
g-de Rham prism (A[q — 1], [p],), where u € Z acts by sending q — ¢". Here ¢" denotes the

convergent power series
u U n
= E — 1",
4 <n> (g )

n=0

By functoriality of prismatic cohomology, the action on the prism induces an action of Z; on
q-dR /4, which is precisely the action predicted in [Sch17, Conjecture 6.2].
Under the identification

q-dRp/a =~ BTHRW-ev <TC_ (R(p) [Gp]/Sala — 11) [%]E\p,q—l)) ’

this action comes from an action of Z on Sa[g — 1] (which induces a compatible action on
RW®[¢,]). Indeed, following [DR25, Notation 3.3.3], we can write

(e

Salg = 1] =~ limSafq]/(¢” — 1) = lim Sa[Z/p"]

and then let Z) act on Z/p® via multiplication (this is another way of making precise what ¢“
is supposed to mean). To see that this induces the same action on (¢-dRg, A)p as above, we can
use quasi-syntomic descent as in the proof of Proposition A.3 to reduce to an even situation,
where the claim is straightforward to verify.

We call this action the Adams action, since it turns out to agree with the action of Z; on
kuy, via Adams operations (see §4.1).
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Appendix B. Even E.-cell structures on flat polynomial rings

In this appendix we show the following technical result.

B.1. Lemma. — Let S[x; | i € I]| be the flat graded polynomial ring on generators x; in
graded degree 1 and homotopical degree 0. As a graded Eo-ring, S[z; | i € I| admits a cell
decomposition with all cells in even homotopical degree.

B.2. Remark. — For polynomial rings in one variable this is shown in [ABM23, Proposi-
tion 3.11]. We believe the argument given there can be adapted to several variables as well.
The authors of that paper also remark that an alternative proof of the one-variable case is
given in the second (but not in the final) arXiv version of [HW22]; we’ll follow the proof given
therein.

Proof of Lemma B.1. To avoid issues with double duals of infinite direct sums, we work in
the oo-category of graded solid condensed spectra Gr(Sp,). Usual graded spectra embed fully
faithfully as the full sub-oco-category of graded discrete solid condensed spectra. We let

D® = Hom g, (sp,) (Bar(Q)(—), S): Algg, (Gr(Spa)) — Algg, (Gr(Spa))

denote the Eo-Koszul duality functor.

Let us first compute D := D@ (S[z; | i € I]). A standard computation shows that the
double Bar construction Bar(® (S[x;]) is given by @P,=0 2*'S(n) as a graded spectrum. Thus,
if I,, :== Sym" I denotes the n'" symmetric power of I as a set, then

D=~@x " []S(-n).

n=0 I

If D>_,, denotes the restriction of D to graded degrees > —n, then D is the limit of the tower of
square-zero extensions --- — D>_9 — D>_1 — Dsp. For all n > 1, the square-zero extension
D>_,, = D> _(,_1) is determined by a pullback diagram

D-_, S

>
R
Dspr) —— S@ X[ S(—n)
I

After applying the Koszul duality functor, this becomes a pushout diagram

Freeg, (EQ"H @ S(”)) —— DP(Dx (o))
In

o

S D®(Ds_,)

Here we use Homgp, ([[; S,S) ~ @, S; this is the advantage of working in solid condensed

spectra. Taking the colimit, we see that D®) (D) has an Eg-cell decomposition with cells in
even homotopical degrees. Once again using that we’re working in the solid condensed world,
we find D®) (D) ~ S[z; | i € I] and so we’re done. O
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Appendix C. On the equivariant Snaith theorem

For abelian compact Lie groups, Spitzweck and Ostveer [S10] show a genuine equivariant form
of Snaith’s theorem. However, the equivalence they construct is only one of homotopy ring
spectra. In this short appendix, we explain how to make their equivalence one of E,.-algebras.
We'll restrict to S for simplicity, but the argument would work for any abelian compact Lie
group.
C.1. Construction. — In [Sch18, (2.3.20)] Schwede introduces an orthogonal space PC that
sends an inner product space V' to the infinite projective space P(Symg V). We can construct
a morphism of orthogonal spaces

c: P — 2°kug
using a similar construction as in [Sch18, Construction 6.3.24]: Namely, for any inner product
space V, the required map c(V): P(Symg& Vi) — Map, (SY, kug (V) is adjoint to the tautologi-
cal map P(Sym% Vi) A SV — kug (V) that sends (L, v) — [L;v] for any line L C Symf Vi and
any point v € SV.

Schwede equips PC with an ultracommutative monoid structure by sending a pair of lines
(L1 C Sym(”é Ve, Ly C Sym(’(“j We) to L1 ®c Lo C Sym(”é Ve ®c Sym{é We = Symf‘é(v @ W)c. It’s
clear from the construction that ¢ is multiplicative. Thus, by adjunction, it induces a map of
ultracommutative global ring spectra

Sgl[P€] — kug .
Before we continue, let us deduce that the element ¢ € mo(ku® 1) is strict.

C.2. Corollary. — Let q € Wo(kusl) be the image of the standard representation of S* under
RU(SY) — Wo(kusl). Then q is detected by an E-algebra map

Sg1lq] — kug
in Spg1. In particular, q is a strict element in (kqu)h(Sl/Cm) for all m.

Proof. By [Sch18, Proposition 4.1.8] (plus a simple argument to get rid of the telescope), the
restriction of Sy [PC] to a genuine S'-equivariant ring spectrum is given by Sgi[PC], where U
is any complete complex S'-universe, that is, a direct sum of countably many copies of each
irreducible complex S'-representation. Choosing any copy of the standard representation g
inside U, we get a C-algebra map C®q® ¢> @ - - - — Sym* U, which induces an S'-equivariant
monoid map {1,q,q?,...} ~P(C) UP(q) UP(¢?>) U --- — P(Sym* ) and thus the desired map
of E-algebras in Spgi

Sgt[q] — Sg1[PY] — kug: . O

C.3. The Bott element. — Let U be a complete complex S'-universe as in the proof above.
Let ¢ denote any copy of the trivial representation inside /. The inclusion C ® e C Symg U,
where C denotes the unit component of the symmetric algebra, defines a map of genuine S'-
equivariant spectra £: Sg1[P(C@¢)] — Sg1[P(Sym¢ U)]. When we restrict to Sgi ~ Sg1[P(C)]
in source and target, £ is canonically the identity, and so we can construct the Bott map as the
factorisation

Ssl @22851 —_— 22851

zj 5
+

S [P(C@e)] — Sgi[P(SymE )]
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It’s clear from the construction that the Eo-map Sg1[P(Sym¢ )] — kugr, that was constructed
in the proof of Corollary C.2, sends § — (.

We also note that if € is another copy of the trivial representation inside ¢/, then the map
S1[P(e @e")] — Sg1[P(Sym¢ U)] is homotopic to 8. Indeed, already the inclusions of P(C@¢)
and P(e®¢’) into P(C@e@¢e’) are S'-equivariantly homotopic. It follows that 3 already factors
through the map Sgi [P(U)] — Sg1 [P(SymE U)] induced by U = Symi U C SymkiU. Finally,
recall that Spitzweck and @stveer construct a homotopy ring spectrum structure on Sq1[P(U)],
so that we can consider the localisation Sgi [P(U)][87].

C.4. Lemma. — The induced map of Ex-algebras in Spg
Ssl [P(Symf’é Z/{)] [6_1] i> KUsl

is an equivalence. Moreover, its precomposition with Sg1 [PU)][B7] — Sg: [P(Sym& U)][87
is the equivalence constructed in [SO10)].

Proof. Since Sg1[P(U)] — Sg1[P(Sym¢ U)] is an equivalence as both U and Symg¢ U are complete
complex S'-universes, it will be enough to show the second statement.

To this end, let Gr® be the orthogonal space from [Sch18, Example 2.3.16] that sends an
inner product space V' to [[;- Gr¥(Ve), where Grt denotes the Grassmannian of i-dimensional
complex subspaces. Let Gr(lC — Gr® be the component where i = 1. Using [Sch18, Propo-
sition 4.1.8] (plus a simple argument to get rid of the telescope), we see that Sg1[P(U)] is
the restriction of the global spectrum Sgl[Grf] to a genuine S'-equivariant spectrum. By
unravelling the proof of Corollary C.2, we immediately see that the diagram

SalGrT] —— Sg[P]

J J

Sg1[Gr®] kg

commutes, where the bottom map is the adjoint of [Sch18, Construction 6.3.24]. By another
straightforward unravelling, the composition Sg[GrT] — Sg[Gr¢] — kug restricts to the map
Sg1[P(U)] — kugi constructed in [SO10]. O

C.5. Equivariant Adams operations — Let p,, denote the n*® power map (=) St — St
Writing the monoid operation multiplicatively, we also consider the monoid endomorphism
(—)": P(Sym¢ U) — P(Symg U). This is equivariant over p, and therefore induces an endomor-
phism

Y™ prSei [P(SymEU)| — Sgi[P(Symé U)]

of Ex-algebras in S'-equivariant spectra. Clearly ¥"(q) = ¢". Moreover, 1" (3) = n/3 holds
S 1—equivariantly. Indeed, to see this, let Uiy C U be the direct summand consisting of all
copies of the trivial S'-representation. Then the usual non-equivariant argument can be applied
to Sg1[P(Sym¢ Usriv)]. Inverting 5 and passing to connected covers, we obtain maps

P": KUgt — KU@[%] and ¥": kugi — kugi [%]

of E-algebras in Spgi. Here we also use pikugt ~ kug: and pikugi ~ kugi, since we’ve
modelled ku by an ultracommutative global ring spectrum kug), where everything acts trivially.
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