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1 What’s Habiro cohomology supposed to do?
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! Disclaimer: We’ll focus on “algebraic” Habiro cohomology; Scholze’s

“analytic” version will only show up in the end.
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1. What’s Habiro cohomology

supposed to do?



Cohomology theories

Study equations over Z or Q (or Fp, Zp, Qp, . . . )

by analysing the

cohomology of the associated geometric objects.
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q-de Rham cohomology

q-de Rham complex (Bhatt–Scholze). There is a functor

q-Ω(−) : SmZ

smooth
Z-algebras

−! D
(
ZJq − 1K

)

derived category
of ZJq−1K

such that:

1 At q = 1, q-ΩR/(q − 1) ≃ Ω∗
R .

2 For all primes p, (q-ΩR)
∧
p ≃ ∆R̂p [ζp ]/(ZpJq−1K,[p]q).

3 Rationally, (q-ΩR ⊗Z Q)∧(q−1) ≃ (Ω∗
R ⊗Z Q)Jq − 1K

,

(q-ΩR)
∧
p

[
1
p

]∧
(q−1)

≃ (Ω∗
R)

∧
p

[
1
p

]
Jq − 1K .
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Habiro cohomology

Habiro cohomology (Scholze’s expectations). Should have coefficients

not in ZJq − 1K, but in the Habiro ring

H := lim
m∈N

Z[q]∧(qm−1) .

Moreover:

1 At q = 1, should get Hodge cohomology (not de Rham).

2 Should recover prismatic cohomology for all primes p.

3 Relation to quantum invariants of 3-manifolds? E.g. Habiro ring of a

number field (Garoufalidis–Scholze–Wheeler–Zagier).
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2. q-Hodge filtrations &

Habiro cohomology



q-Hodge filtrations

q-Hodge filtrations. Let Smq-Hdg
Z be the category of pairs(

R

smooth over Z

, fil⋆q-Hdg q-ΩR

filtered (q−1)⋆ZJq−1K-module

)

such that:

1 fil⋆q-Hdg q-ΩR/(q − 1) ≃ fil⋆Hdg Ω
∗
R .

2 (fil⋆q-Hdg q-ΩR ⊗Z Q)∧(q−1) ≃ fil⋆(Hdg,q−1)(Ω
∗
R ⊗Z Q)Jq − 1K

,

fil⋆q-Hdg(q-ΩR)
∧
p

[
1
p

]∧
(q−1)

≃ fil⋆(Hdg,q−1)(Ω
∗
R)

∧
p

[
1
p

]
Jq − 1K for all p .
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Recall: (q-ΩR ⊗Z Q)∧(q−1) ≃ (Ω∗

R ⊗Z Q)Jq − 1K.
)
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q-Hodge/Habiro–Hodge complexes

The q-Hodge complex. Given (R, fil⋆q-Hdg q-ΩR), define the q-Hodge

complex

q-HdgR :=

q-ΩR

[
filnq-Hdg
(q − 1)n

∣∣∣∣ n ⩾ 1

]∧
(q−1)

.

Theorem (W. 2025).

1 There exists a non-trivial factorisation

Smq-Hdg
Z D

(
ZJq − 1K

)
q-Hdg(−)

2 H∗(q-HdgR/(q
m − 1)

) ∼= q-WmΩ
∗
R . In particular,

H∗(q-HdgR/(q − 1)
) ∼= Ω∗

R .
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q-Hodge/Habiro–Hodge complexes

Theorem (continued)

3 q-ΩR ≃ Lη(q−1)(q-HdgR).

4 The Habiro ring of a number field F (Garoufalidis–Scholze–Wheeler–

Zagier) can be recovered as

q-HdgOF [1/∆] ≃ HOF [1/∆]

(∆ = discriminant of F ).

If X is a smooth scheme over Z, up to inverting all primes p ⩽ dim(X/Z),
one can define algebraic Habiro cohomology of X as

RΓH(X ) := RΓ(X , q-HdgX ) .

! Probably no six functor formalism/stacky approach. But there should

be cohomology classes from quantum invariants (Garoufalidis–Wheeler).
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3. q-Hodge filtrations from

homotopy theory



HC− & the Hodge filtration

Recall: For an associative ring R, Hochschild homology of R is

HH(R) :=

∣∣∣∣

R   R ⊗L
Z R   
 R ⊗L

Z R ⊗L
Z R   
  · · ·

cyclic bar construction

∣∣∣∣ .

There’s an action S1 ↷ HH(R), put HC−(R) := HH(R)hS
1

(Connes).

Theorem (. . . , Antieau).

If R is quasisyntomic, there is a complete exhaustive “motivic” filtration

fil⋆mot HC
−(R) with associated graded

grimot HC
−(R) ≃ filiHdg dRR

[2i ]

(where dR(−) denotes the non-abelian derived functor of Ω∗
(−)).
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TC−(−/ku) & q-Hodge filtrations

Even filtration (Hahn–Raksit–Wilson). The motivic filtration agrees with

the even filtration on HC−(R):

:= lim
HH(R)!E even

S1 equivariant

E∞

τ⩾2⋆( ) .

Theorem (W. 2025).

Let R be quasisyntomic,

2 ∈ R×. Suppose R lifts to an E2-ring spec-

trum SR such that SR ⊗ Z ≃ R. Then there exists a q-Hodge filtration

fil⋆q-Hdg q-dRR such that

griev,hS1 TC
−(ku⊗ SR/ku) ≃ filiq-Hdg q-

(Raksit proved this first for S[x ]; closely related work of Devalapurkar)
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Habiro cohomology, homotopically

Theorem (W. 2025).

Let KU := ku[β−1] be the periodic complex K -theory spectrum.

Then

gr0ev,hS1 TC
−(KU⊗ SR/KU) ≃ q-HdgR .

The Habiro–Hodge complex is given by

gr0ev,S1

(
lim
m∈N

(
THH(KU⊗ SR/KU)Cm

)h(S1/Cm)lim
m∈N

(
THH(KU⊗ SR/KU)Cm

)h(S1/Cm)

loooooooooooooooooooooomoooooooooooooooooooooon

topological cyclonic homologyTCn(KU⊗SR/KU)

)
≃ q-HdgR ,

where (−)Cm denotes genuine fixed points for Cm ⊆ S1.
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4. Refined THH/TC− &

analytic Habiro cohomology



Habiro cohomology over QQ?

! Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes

or an E2-lift to the sphere spectrum.

“Solution”: Work with varieties over Q.

2 Recall:

(q-ΩR ⊗Z Q)(q−1) ≃ (Ω∗
R ⊗Z Q) Jq − 1K .

So for varieties over Q, we only get de Rham information, no com-

parison maps to étale/singular cohomology with torsion coefficients.

Solution: Refined THH/TC−.
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Refined THH/TC−

Construction (Efimov–Scholze). Let k be an E∞-ring spectrum.

Suppose

k is complex orientable, choose complex orientation t ∈ π−2(k
hS1

).

rigid

Motlock

not rigid

ModBS
1

k

THH(−/k)

⊗

TC−,ref (−/k)
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THHref(QQ)

THHref can be nontrivial modulo p, even for rational inputs.

We can

describe THHref(Q)⊗ ku, or equivalently TC−,ref(ku⊗Q/ku):

Theorem (Meyer–W. 2024).

π TC−,ref( ⊗Q/ )

∼= O(Z †) ,

where

• O(−†) denotes a ring of overconvergent functions,

• Z ⊆ SpaZpJq − 1K denotes the subset

Spa
(
Fp((q − 1)),FpJq − 1K

)
∪

⋃
α⩾0

Spa
(
Qp(ζpα),Zp[ζpα ]

)
.
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• Z ⊆ SpaZpJq − 1K denotes the subset

Spa
(
Fp((q − 1)),FpJq − 1K

)
∪

⋃
α⩾0

Spa
(
Qp(ζpα),Zp[ζpα ]

)
.
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Outlook

Analytic Habiro cohomology (Scholze). Coefficients in the analytic

Habiro ring Han.

. . . via THHref (work in progress). Crucial observations:

1 (Scholze) The analytic de Rham stack lifts canonically to S((u))■.

2 (W.) Analytic Habiro ring can be recovered as

Han ≃ π0TCn
ref
(
KU((u))/KU[[u]]

)[
1
u

]
.
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Habiro ring Han. This is a Z((u))■-algebra, |u| = 1
2 .

. . . via THHref (work in progress). Crucial observations:

1 (Scholze) The analytic de Rham stack lifts canonically to S((u))■.

2 (W.) Analytic Habiro ring can be recovered as

Han ≃ π0TCn
ref
(
KU((u))/KU[[u]]

)[
1
u

]
.

(
Recall: TCn(−) := lim

m∈N

(
THH(−)Cm

)h(S1/Cm).
)
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Analytic Habiro cohomology (Scholze). Coefficients in the analytic

Habiro ring Han. This is a Z((u))■-algebra, |u| = 1
2 .

. . . via THHref (work in progress). Crucial observations:

1 (Scholze) The analytic de Rham stack lifts canonically to S((u))■.

2 (W.) Analytic Habiro ring can be recovered as

Han ≃ π0TCn
ref
(
KU((u))/KU[[u]]

)[
1
u

]
.

Question.

Can we compute this for bases other than KU (e.g. elliptic cohomology,

MU, S)?
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Thank you!
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