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Moreover:

1 At g =1, should get Hodge cohomology (not de Rham).
2 Should recover prismatic cohomology for all primes p.

3 Relation to quantum invariants of 3-manifolds? E.g. Habiro ring of a
number field (Garoufalidis=Scholze-Wheeler-Zagier).

= We should look for g-deformations of the Hodge filtration!
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fily hag(9-Qr)p [%](q_l) = fillhag.q-1) (W) [%] [g — 1] for all p.

Theorem (W. 2025).

q-Hdg

The forgetful functor Sm7 — Smy has no section, but over the full

subcategory
{R | p € R* for all primes p < dim(R/Z)} C Smy,

there exists a section.
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H*(g-Hdgg/(q — 1)) = Qk.

5/13



q-HOdge/Habiro—Hodge Complexes ‘ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (continued)

3 g-Qr ~ L1g-1)(g-Hdgg).

6/13



q-HOdge/Habiro—Hodge Complexes ‘ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (continued)

3 g-Qr =~ Lng-1)(g-Hdgg).
4 The Habiro ring of a number field F (Garoufalidis—Scholze-Wheeler—
Zagier) can be recovered as

g-Hdgo,1/a) = Hori/al

(A = discriminant of F).

6/13



g-Hodge/Habiro-Hodge complexes @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (continued)

3 g-Qr =~ Lng-1)(g-Hdgg).
4 The Habiro ring of a number field F (Garoufalidis—Scholze-Wheeler—
Zagier) can be recovered as

g-Hdgo,1/a) = Hori/al

(A = discriminant of F).

If X is a smooth scheme over Z, up to inverting all primes p < dim(X/Z),
one can define algebraic Habiro cohomology of X as

RIM(X) == RI(X, g-Hdgyx) .

6/13



g-Hodge/Habiro-Hodge complexes @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (continued)

3 g-Qr =~ Lng-1)(g-Hdgg).
4 The Habiro ring of a number field F (Garoufalidis—Scholze-Wheeler—
Zagier) can be recovered as

g-Hdgo,1/a) = Hori/al

(A = discriminant of F).

If X is a smooth scheme over Z, up to inverting all primes p < dim(X/Z),
one can define algebraic Habiro cohomology of X as

RIM(X) == RI(X, g-Hdgyx) .

A Probably no six functor formalism/stacky approach.

6/13



g-Hodge/Habiro-Hodge complexes @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (continued)

3 g-Qr =~ Lng-1)(g-Hdgg).
4 The Habiro ring of a number field F (Garoufalidis—Scholze-Wheeler—
Zagier) can be recovered as

g-Hdgo,1/a) = Hori/al
(A = discriminant of F).

If X is a smooth scheme over Z, up to inverting all primes p < dim(X/Z),
one can define algebraic Habiro cohomology of X as

RIM(X) == RI(X, g-Hdgyx) .

A Probably no six functor formalism/stacky approach. But there should
be cohomology classes from quantum invariants (Garoufalidis—Wheeler).

6/13



3. g-Hodge filtrations from
homotopy theory




HC™ & the Hodge filtration ’@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

HH(R) = cyclic bar construction ‘ .

7/13



HC™ & the Hodge filtration ’@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

HH(R) := R<—R®LR<—R®LR®LR
Z Z Z

TTTT

7/13



HC™ & the Hodge filtration ‘@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

There's an action S ~ HH(R), put HC™(R) == HH(R)hSl (Connes).

HH(R) := R<—R®LR<—R®LR®LR
Z Z Z

TTTT

7/13



HC™ & the Hodge filtration ‘@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

There's an action S ~ HH(R), put HC™(R) == HH(R)hSl (Connes).

HH(R) = | RER®;RE R®5 R®Q5ER

TTTT

Theorem (..., Antieau).

7/13



HC™ & the Hodge filtration @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

There's an action S ~ HH(R), put HC™(R) == HH(R)hSl (Connes).

HH(R) = | RER®5RE R®L R®LER
Z Z zZ

TTTT

Theorem (..., Antieau).

If R is quasisyntomic, there is a complete exhaustive “motivic” filtration
fils o HC™ (R) with associated graded

mot

griot HC™(R) ~ fillg, dRe

7/13



HC™ & the Hodge filtration @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

There's an action S ~ HH(R), put HC™(R) == HH(R)hSl (Connes).

HH(R) = | RER®5RE R®L R®LER

TTTT

Theorem (..., Antieau).

If R is quasisyntomic, there is a complete exhaustive “motivic” filtration
fils o HC™ (R) with associated graded

mot
HC™(R) = filj4g dRr

mot

(where dR( ) denotes the non-abelian derived functor of QE‘_)).

7/13



HC™ & the Hodge filtration @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Recall: For an associative ring R, Hochschild homology of R is

There's an action S ~ HH(R), put HC™(R) == HH(R)hSl (Connes).

HH(R) = | RER®5RE R®L R®LER

TTTT

Theorem (..., Antieau).

If R is quasisyntomic, there is a complete exhaustive “motivic” filtration
fils o HC™ (R) with associated graded

mot

gr o HC(R) = filly, dRR[2]

(where dR(_) denotes the non-abelian derived functor of QE‘_)).

7/13



TC_(_/ku) & g-Hodge filtrations ; ’@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

8/13



TC_(_/ku) & g-Hodge filtrations ; MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil, HH(R) = Tso.( E ).

lim
HH(R)—E even
Eoo

8/13



TC_(_/ku) & g-Hodge filtrations ; MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil,, HH(R) = lim oo E ).
Eoo

8/13



TC_(_/ku) & g-Hodge filtrations ; ’@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EM').

lim
HH(R)—E even
S equivariant Eog

8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, pst HC(R) = Ts0.(EMS").

lim
HH(R)—E even
st equivariant Eo

The even filtration works equally well for HC™ (—/ku).

8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, pst HC(R) = Ts0.(EMS").

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for HC™ (—/ku).

8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, pst HC(R) = Ts0.(EMS").

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC (—/ku).

8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, pst HC(R) = Ts0.(EMS").

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EFS') .

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

Theorem (W. 2025).

Let R be quasisyntomic,

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EFS') .

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

Theorem (W. 2025).
Let R be quasisyntomic, 2 € R*.

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EFS') .

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

Theorem (W. 2025).

Let R be quasisyntomic, 2 € R*. Suppose R lifts to an Ep-ring spec-
trum Sg such that SR ® Z ~ R.

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EFS') .

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

Theorem (W. 2025).

Let R be quasisyntomic, 2 € R*. Suppose R lifts to an Ep-ring spec-
trum Sg such that Sg ® Z ~ R. Then there exists a g-Hodge filtration
fi|<*,_Hdg g-dRg such that

grl, pst TC (ku ® Sg/ku) ~ fil] 4 g-dRR

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



TC_(_/ku) & g-Hodge filtrations MAX PLANCK INSTITUTE

FOR MATHEMATICS

Even filtration (Hahn—Raksit-Wilson). The motivic filtration agrees with
the even filtration on HC™ (R):

fil3, ps1 HC™(R) = T2, (EFS') .

lim
HH(R)—E even
st equivariant Eo

connective complex K-theory

The even filtration works equally well for TC™ (—/ku).
There's a version for [Eq-ring spectra too (Pstragowski).

Theorem (W. 2025).

Let R be quasisyntomic, 2 € R*. Suppose R lifts to an Ep-ring spec-
trum Sg such that Sg ® Z ~ R. Then there exists a g-Hodge filtration
fi|<*,_Hdg g-dRg such that

griy ns1 TC™ (ku ® Sg/ku) = fil] 14, g-dRR[21]

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



TC_(_/ku) & g-Hodge filtrations @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Theorem (Antieau, Hahn—Raksit-Wilson).
Let R be quasisyntomic. Then

gri, st HC™(R) = fillyq, dRg[21]

deformation ku — Z | deformation g-dRg — dRg

Theorem (W. 2025).

Let R be quasisyntomic, 2 € R*. Suppose R lifts to an Ep-ring spec-
trum Sg such that Sg ® Z ~ R. Then there exists a g-Hodge filtration
fil} 1ag -dRR such that

gri, ns1 TC™ (ku ® Sg/ku) = fil] 14, g-dRR[21].

(Raksit proved this first for S[x]; closely related work of Devalapurkar) 8/13



Habiro cohomology, homotopically ‘@ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum.

9/13



Habiro cohomology, homotopically ‘@ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum. Then

evh

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).

Let KU := ku[371] be the periodic complex K-theory spectrum. Then

evh

The Habiro-Hodge complex is given by

THH(KU ® Sg/KU)

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[771] be the periodic complex K-theory spectrum. Then

st TCT (KU ® Sg/KU) ~ g-Hdgp, .

evh

The Habiro-Hodge complex is given by

THH(KU ® Sg/KU)“" ,

where (=) denotes genuine fixed points for C,, C S*.

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum. Then

ev pst TC™ (KU ® Sg/KU) ~ g-Hdgp, .

The Habiro-Hodge complex is given by

(THH(KU @ Sg/KU)Cn) " /) :

where (=) denotes genuine fixed points for C,, C S*.

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum. Then

ev nst TC (KU ® Sgr/KU) ~ g-Hdgp, .

The Habiro-Hodge complex is given by

. Co\ h(S/Cm)
J:g;\{(THH(KU@SR/KU) ) ,

where (—)¢" denotes genuine fixed points for C,, C S.

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum. Then

st TCT (KU ® Sg/KU) ~ g-Hdgp, .

evh

The Habiro-Hodge complex is given by

gl s ( lim (THH(KU ® Sg/KU) <" e e ) ~ g-Hdgp,

where (=) denotes genuine fixed points for C,, C S*.

9/13



Habiro cohomology, homotopically @ Y AR TG TS

FOR MATHEMATICS

Theorem (W. 2025).
Let KU := ku[371] be the periodic complex K-theory spectrum. Then

st TCT (KU ® Sg/KU) ~ g-Hdgp, .

evh

The Habiro-Hodge complex is given by

gr?, 51( lim (THH(KU ® Sg/KU) <" e /Cm)) ~ g-Hdgp,

_

topological cyclonic homo/ogyTCn(KU@SR /KU)

where (=) denotes genuine fixed points for C,, C S*.

9/13



4. Refined THH/TC™ &
analytic Habiro cohomology




FOR MATHEMATICS

Habiro cohomology over QQf ’@ MAX PLANCK INSTITUTE

& Problems:

10/13



Habiro cohomology over ! ’@ MAX PLANCK INSTITUTE
FOR MATHEMATICS

& Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes

or an [E,-lift to the sphere spectrum.

10/13



Habiro cohomology over QQf ‘@ MAX PLANCK INSTITUTE
FOR MATHEMATICS

& Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes

or an [E,-lift to the sphere spectrum.
“Solution”: Work with varieties over QQ.

10/13



Habiro cohomology over Q7 g @ MAX PLANCK INSTITUTE
FOR MATHEMATICS

& Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes

or an [E,-lift to the sphere spectrum.
“Solution”: Work with varieties over QQ.

2 Recall:
(Q‘QR Rz Q)(q—l) = (Q*R Sz Q) [[q - 11] .

10/13



Habiro cohomology over Q7 ‘@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

& Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes
or an [E,-lift to the sphere spectrum.
“Solution”: Work with varieties over QQ.

2 Recall:
(Q‘QR Rz Q)(q—l) = (Q*R Sz Q) [[q - 1]] .

So for varieties over Q, we only get de Rham information, no com-
parison maps to étale/singular cohomology with torsion coefficients.

10/13



Habiro cohomology over Q7 ‘@ MAX PLANCK INSTITUTE

FOR MATHEMATICS

& Problems:

1 To define algebraic Habiro cohomology, need to invert “small” primes
or an [E,-lift to the sphere spectrum.
“Solution”: Work with varieties over QQ.

2 Recall:
(CI‘QR Rz Q)(q—l) = (Q*R Sz Q) [[q - 1]] .

So for varieties over Q, we only get de Rham information, no com-
parison maps to étale/singular cohomology with torsion coefficients.
Solution: Refined THH/TC™.

10/13



Refined THH/TC™ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum.

11/13



Refined THH/TC™ ’ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum.

THH(—/k)

BS!
= Mod,

|
Mot©

11/13



Refined THH/TC™ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum.

rigid

oc _ THH(=/k)
I\/Iot',<

Mod®S'

11/13



FOR MATHEMATICS

Refined THH/TC™ : ’@ MAX PLANCK INSTITUTE

Construction (Efimov—Scholze). Let k be an E.-ring spectrum.

rigid not rigid

Mot!o¢ T”Hg/ 9, ModB*'

11/13



Refined THH /TC_ ¢ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum.

rigid THH(—/K) not rigid
I - BS!
Mot© 5 Mody,
THppa >~ T
\//r)\ .
BS!\rig
(Mod;>")

11/13



Refined THH/TC™ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum. Suppose
k is complex orientable, choose complex orientation t € m_p(k"S").

rigid THH(—/K) not rigid
I - BS!
Mot© 5 Mody,
THppe >~ T
) .
BS!\rig
(Mod;>")

11/13



Refined THH/TC™ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum. Suppose
k is complex orientable, choose complex orientation t € m_p(k"S").

rigid not rigid 1
THH(—/k) G (=)
Mot/o© — Mod? Modyyy
f@g;;\\\\ T
) )
(Mod?s')'

11/13



Refined THH/TC™ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum. Suppose
k is complex orientable, choose complex orientation t € m_p(k"S").

rigid B not rigid st
Motles — ) MogBs' Modyy
T T [
(\/4)\\) Iyri ~
(Modg® )™ ——=—— Nuc(k[t])

11/13



Refined THH/TC™ MAX PLANCK INSTITUTE

FOR MATHEMATICS

Construction (Efimov—Scholze). Let k be an E.-ring spectrum. Suppose
k is complex orientable, choose complex orientation t € m_p(k"S").

rigid not rigid el
Motles — ) MogBs' Modyy
\\\\ 7‘/7/:/;;\\\\\ T [
\\ /'(') ’ BS!\ rig ~
(Mod?S")™® = Nuc(k[t])
Ty T o

11/13



THH"™ (Q) ’ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™" can be nontrivial modulo p, even for rational inputs.

12/13



FOR MATHEMATICS

THH"™ (Q) ’ @ MAX PLANCK INSTITUTE

THH™" can be nontrivial modulo p, even for rational inputs. We can
describe THH™ (Q) ® ku

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

12/13



THH™(Q) ‘ @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).

T TC"( ku @ Q/ ku )

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).

o TCT (KU @ Q/ KU)

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).

mo TCT™ (KUS ® Q/KU»)

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).

mo TCT™(KUS ® Q/KUS) = 0(Z1),

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).
mo TCT™ (KUA ® Q/KUSL) = 0(Z1),
where

O(—T) denotes a ring of overconvergent functions,

12/13



THH™(Q) @ MAX PLANCK INSTITUTE

FOR MATHEMATICS

THH™ can be nontrivial modulo p, even for rational inputs. We can
describe THH™(Q) ® ku, or equivalently TC™"* (ku ® Q/ku):

Theorem (Meyer—W. 2024).
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a>0
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Analytic Habiro cohomology (Scholze). Coefficients in the analytic
Habiro ring H?". This is a Z((u))a-algebra, |u| = %

. via THH™" (work in progress). Crucial observations:

1 (Scholze) The analytic de Rham stack lifts canonically to S(¢/))a-

2 (W.) Analytic Habiro ring can be recovered as

H2" ~ 1o TCn"™" (KU ((w))/KU[u]) [2] -

Question.

Can we compute this for bases other than KU (e.g. elliptic cohomology,
MU, S)?
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